Whakaoti mō x
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
1-x-\left(x+3\right)\times 3+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,-2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+2\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+5x+6,x+2,x+3.
1-x-\left(3x+9\right)+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+3 ki te 3.
1-x-3x-9+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Hei kimi i te tauaro o 3x+9, kimihia te tauaro o ia taurangi.
1-4x-9+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Pahekotia te -x me -3x, ka -4x.
-8-4x+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Tangohia te 9 i te 1, ka -8.
-8-4x+\left(2x+4\right)\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 2.
-8-4x+2x^{2}+6x+4=\left(x+2\right)\left(x+3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+4 ki te x+1 ka whakakotahi i ngā kupu rite.
-8+2x+2x^{2}+4=\left(x+2\right)\left(x+3\right)
Pahekotia te -4x me 6x, ka 2x.
-4+2x+2x^{2}=\left(x+2\right)\left(x+3\right)
Tāpirihia te -8 ki te 4, ka -4.
-4+2x+2x^{2}=x^{2}+5x+6
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x+3 ka whakakotahi i ngā kupu rite.
-4+2x+2x^{2}-x^{2}=5x+6
Tangohia te x^{2} mai i ngā taha e rua.
-4+2x+x^{2}=5x+6
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
-4+2x+x^{2}-5x=6
Tangohia te 5x mai i ngā taha e rua.
-4-3x+x^{2}=6
Pahekotia te 2x me -5x, ka -3x.
-4-3x+x^{2}-6=0
Tangohia te 6 mai i ngā taha e rua.
-10-3x+x^{2}=0
Tangohia te 6 i te -4, ka -10.
x^{2}-3x-10=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-3 ab=-10
Hei whakaoti i te whārite, whakatauwehea te x^{2}-3x-10 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-10 2,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
1-10=-9 2-5=-3
Tātaihia te tapeke mō ia takirua.
a=-5 b=2
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(x-5\right)\left(x+2\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=5 x=-2
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x+2=0.
x=5
Tē taea kia ōrite te tāupe x ki -2.
1-x-\left(x+3\right)\times 3+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,-2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+2\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+5x+6,x+2,x+3.
1-x-\left(3x+9\right)+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+3 ki te 3.
1-x-3x-9+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Hei kimi i te tauaro o 3x+9, kimihia te tauaro o ia taurangi.
1-4x-9+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Pahekotia te -x me -3x, ka -4x.
-8-4x+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Tangohia te 9 i te 1, ka -8.
-8-4x+\left(2x+4\right)\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 2.
-8-4x+2x^{2}+6x+4=\left(x+2\right)\left(x+3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+4 ki te x+1 ka whakakotahi i ngā kupu rite.
-8+2x+2x^{2}+4=\left(x+2\right)\left(x+3\right)
Pahekotia te -4x me 6x, ka 2x.
-4+2x+2x^{2}=\left(x+2\right)\left(x+3\right)
Tāpirihia te -8 ki te 4, ka -4.
-4+2x+2x^{2}=x^{2}+5x+6
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x+3 ka whakakotahi i ngā kupu rite.
-4+2x+2x^{2}-x^{2}=5x+6
Tangohia te x^{2} mai i ngā taha e rua.
-4+2x+x^{2}=5x+6
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
-4+2x+x^{2}-5x=6
Tangohia te 5x mai i ngā taha e rua.
-4-3x+x^{2}=6
Pahekotia te 2x me -5x, ka -3x.
-4-3x+x^{2}-6=0
Tangohia te 6 mai i ngā taha e rua.
-10-3x+x^{2}=0
Tangohia te 6 i te -4, ka -10.
x^{2}-3x-10=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-3 ab=1\left(-10\right)=-10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-10 2,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
1-10=-9 2-5=-3
Tātaihia te tapeke mō ia takirua.
a=-5 b=2
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(x^{2}-5x\right)+\left(2x-10\right)
Tuhia anō te x^{2}-3x-10 hei \left(x^{2}-5x\right)+\left(2x-10\right).
x\left(x-5\right)+2\left(x-5\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-5\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=-2
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x+2=0.
x=5
Tē taea kia ōrite te tāupe x ki -2.
1-x-\left(x+3\right)\times 3+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,-2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+2\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+5x+6,x+2,x+3.
1-x-\left(3x+9\right)+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+3 ki te 3.
1-x-3x-9+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Hei kimi i te tauaro o 3x+9, kimihia te tauaro o ia taurangi.
1-4x-9+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Pahekotia te -x me -3x, ka -4x.
-8-4x+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Tangohia te 9 i te 1, ka -8.
-8-4x+\left(2x+4\right)\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 2.
-8-4x+2x^{2}+6x+4=\left(x+2\right)\left(x+3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+4 ki te x+1 ka whakakotahi i ngā kupu rite.
-8+2x+2x^{2}+4=\left(x+2\right)\left(x+3\right)
Pahekotia te -4x me 6x, ka 2x.
-4+2x+2x^{2}=\left(x+2\right)\left(x+3\right)
Tāpirihia te -8 ki te 4, ka -4.
-4+2x+2x^{2}=x^{2}+5x+6
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x+3 ka whakakotahi i ngā kupu rite.
-4+2x+2x^{2}-x^{2}=5x+6
Tangohia te x^{2} mai i ngā taha e rua.
-4+2x+x^{2}=5x+6
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
-4+2x+x^{2}-5x=6
Tangohia te 5x mai i ngā taha e rua.
-4-3x+x^{2}=6
Pahekotia te 2x me -5x, ka -3x.
-4-3x+x^{2}-6=0
Tangohia te 6 mai i ngā taha e rua.
-10-3x+x^{2}=0
Tangohia te 6 i te -4, ka -10.
x^{2}-3x-10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-10\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3 mō b, me -10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-10\right)}}{2}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2}
Whakareatia -4 ki te -10.
x=\frac{-\left(-3\right)±\sqrt{49}}{2}
Tāpiri 9 ki te 40.
x=\frac{-\left(-3\right)±7}{2}
Tuhia te pūtakerua o te 49.
x=\frac{3±7}{2}
Ko te tauaro o -3 ko 3.
x=\frac{10}{2}
Nā, me whakaoti te whārite x=\frac{3±7}{2} ina he tāpiri te ±. Tāpiri 3 ki te 7.
x=5
Whakawehe 10 ki te 2.
x=-\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{3±7}{2} ina he tango te ±. Tango 7 mai i 3.
x=-2
Whakawehe -4 ki te 2.
x=5 x=-2
Kua oti te whārite te whakatau.
x=5
Tē taea kia ōrite te tāupe x ki -2.
1-x-\left(x+3\right)\times 3+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,-2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+2\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+5x+6,x+2,x+3.
1-x-\left(3x+9\right)+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+3 ki te 3.
1-x-3x-9+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Hei kimi i te tauaro o 3x+9, kimihia te tauaro o ia taurangi.
1-4x-9+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Pahekotia te -x me -3x, ka -4x.
-8-4x+\left(x+2\right)\times 2\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Tangohia te 9 i te 1, ka -8.
-8-4x+\left(2x+4\right)\left(x+1\right)=\left(x+2\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 2.
-8-4x+2x^{2}+6x+4=\left(x+2\right)\left(x+3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+4 ki te x+1 ka whakakotahi i ngā kupu rite.
-8+2x+2x^{2}+4=\left(x+2\right)\left(x+3\right)
Pahekotia te -4x me 6x, ka 2x.
-4+2x+2x^{2}=\left(x+2\right)\left(x+3\right)
Tāpirihia te -8 ki te 4, ka -4.
-4+2x+2x^{2}=x^{2}+5x+6
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x+3 ka whakakotahi i ngā kupu rite.
-4+2x+2x^{2}-x^{2}=5x+6
Tangohia te x^{2} mai i ngā taha e rua.
-4+2x+x^{2}=5x+6
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
-4+2x+x^{2}-5x=6
Tangohia te 5x mai i ngā taha e rua.
-4-3x+x^{2}=6
Pahekotia te 2x me -5x, ka -3x.
-3x+x^{2}=6+4
Me tāpiri te 4 ki ngā taha e rua.
-3x+x^{2}=10
Tāpirihia te 6 ki te 4, ka 10.
x^{2}-3x=10
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=10+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=10+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{49}{4}
Tāpiri 10 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{49}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{7}{2} x-\frac{3}{2}=-\frac{7}{2}
Whakarūnātia.
x=5 x=-2
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
x=5
Tē taea kia ōrite te tāupe x ki -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}