Whakaoti mō x
x = -\frac{19}{14} = -1\frac{5}{14} \approx -1.357142857
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(4x+5\right)\left(1-4x\right)+2\left(x+1\right)\left(4x+5\right)\times 2=\left(2x+2\right)\times 3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{5}{4},-1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(x+1\right)\left(4x+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+2,4x+5.
-16x-16x^{2}+5+2\left(x+1\right)\left(4x+5\right)\times 2=\left(2x+2\right)\times 3
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x+5 ki te 1-4x ka whakakotahi i ngā kupu rite.
-16x-16x^{2}+5+4\left(x+1\right)\left(4x+5\right)=\left(2x+2\right)\times 3
Whakareatia te 2 ki te 2, ka 4.
-16x-16x^{2}+5+\left(4x+4\right)\left(4x+5\right)=\left(2x+2\right)\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+1.
-16x-16x^{2}+5+16x^{2}+36x+20=\left(2x+2\right)\times 3
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x+4 ki te 4x+5 ka whakakotahi i ngā kupu rite.
-16x+5+36x+20=\left(2x+2\right)\times 3
Pahekotia te -16x^{2} me 16x^{2}, ka 0.
20x+5+20=\left(2x+2\right)\times 3
Pahekotia te -16x me 36x, ka 20x.
20x+25=\left(2x+2\right)\times 3
Tāpirihia te 5 ki te 20, ka 25.
20x+25=6x+6
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+2 ki te 3.
20x+25-6x=6
Tangohia te 6x mai i ngā taha e rua.
14x+25=6
Pahekotia te 20x me -6x, ka 14x.
14x=6-25
Tangohia te 25 mai i ngā taha e rua.
14x=-19
Tangohia te 25 i te 6, ka -19.
x=\frac{-19}{14}
Whakawehea ngā taha e rua ki te 14.
x=-\frac{19}{14}
Ka taea te hautanga \frac{-19}{14} te tuhi anō ko -\frac{19}{14} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}