Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1-4\sqrt{3}}{-3\sqrt{3}}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{\left(1-4\sqrt{3}\right)\sqrt{3}}{-3\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1-4\sqrt{3}}{-3\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\left(1-4\sqrt{3}\right)\sqrt{3}}{-3\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\left(1-4\sqrt{3}\right)\sqrt{3}}{-9}
Whakareatia te -3 ki te 3, ka -9.
\frac{\sqrt{3}-4\left(\sqrt{3}\right)^{2}}{-9}
Whakamahia te āhuatanga tohatoha hei whakarea te 1-4\sqrt{3} ki te \sqrt{3}.
\frac{\sqrt{3}-4\times 3}{-9}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{3}-12}{-9}
Whakareatia te -4 ki te 3, ka -12.
\frac{-\sqrt{3}+12}{9}
Me whakarea tahi te taurunga me te tauraro ki te -1.