Aromātai
\frac{-\sqrt{15}-8}{7}\approx -1.696140478
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(1+\sqrt{15}\right)\left(1+\sqrt{15}\right)}{\left(1-\sqrt{15}\right)\left(1+\sqrt{15}\right)}
Whakangāwaritia te tauraro o \frac{1+\sqrt{15}}{1-\sqrt{15}} mā te whakarea i te taurunga me te tauraro ki te 1+\sqrt{15}.
\frac{\left(1+\sqrt{15}\right)\left(1+\sqrt{15}\right)}{1^{2}-\left(\sqrt{15}\right)^{2}}
Whakaarohia te \left(1-\sqrt{15}\right)\left(1+\sqrt{15}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+\sqrt{15}\right)\left(1+\sqrt{15}\right)}{1-15}
Pūrua 1. Pūrua \sqrt{15}.
\frac{\left(1+\sqrt{15}\right)\left(1+\sqrt{15}\right)}{-14}
Tangohia te 15 i te 1, ka -14.
\frac{\left(1+\sqrt{15}\right)^{2}}{-14}
Whakareatia te 1+\sqrt{15} ki te 1+\sqrt{15}, ka \left(1+\sqrt{15}\right)^{2}.
\frac{1+2\sqrt{15}+\left(\sqrt{15}\right)^{2}}{-14}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+\sqrt{15}\right)^{2}.
\frac{1+2\sqrt{15}+15}{-14}
Ko te pūrua o \sqrt{15} ko 15.
\frac{16+2\sqrt{15}}{-14}
Tāpirihia te 1 ki te 15, ka 16.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}