Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{\left(x-6\right)x^{2}}
Tuhia te \frac{\frac{1}{x-6}}{x^{2}} hei hautanga kotahi.
\frac{1}{x^{3}-6x^{2}}
Whakamahia te āhuatanga tohatoha hei whakarea te x-6 ki te x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(x-6\right)x^{2}})
Tuhia te \frac{\frac{1}{x-6}}{x^{2}} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{3}-6x^{2}})
Whakamahia te āhuatanga tohatoha hei whakarea te x-6 ki te x^{2}.
-\left(x^{3}-6x^{2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-6x^{2})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{3}-6x^{2}\right)^{-2}\left(3x^{3-1}+2\left(-6\right)x^{2-1}\right)
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(x^{3}-6x^{2}\right)^{-2}\left(-3x^{2}+12x^{1}\right)
Whakarūnātia.
\left(x^{3}-6x^{2}\right)^{-2}\left(-3x^{2}+12x\right)
Mō tētahi kupu t, t^{1}=t.