Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+3+18=\left(x-3\right)x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x^{2}-9,x+3.
x+21=\left(x-3\right)x
Tāpirihia te 3 ki te 18, ka 21.
x+21=x^{2}-3x
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te x.
x+21-x^{2}=-3x
Tangohia te x^{2} mai i ngā taha e rua.
x+21-x^{2}+3x=0
Me tāpiri te 3x ki ngā taha e rua.
4x+21-x^{2}=0
Pahekotia te x me 3x, ka 4x.
-x^{2}+4x+21=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=4 ab=-21=-21
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+21. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,21 -3,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -21.
-1+21=20 -3+7=4
Tātaihia te tapeke mō ia takirua.
a=7 b=-3
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(-x^{2}+7x\right)+\left(-3x+21\right)
Tuhia anō te -x^{2}+4x+21 hei \left(-x^{2}+7x\right)+\left(-3x+21\right).
-x\left(x-7\right)-3\left(x-7\right)
Tauwehea te -x i te tuatahi me te -3 i te rōpū tuarua.
\left(x-7\right)\left(-x-3\right)
Whakatauwehea atu te kīanga pātahi x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
x=7 x=-3
Hei kimi otinga whārite, me whakaoti te x-7=0 me te -x-3=0.
x=7
Tē taea kia ōrite te tāupe x ki -3.
x+3+18=\left(x-3\right)x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x^{2}-9,x+3.
x+21=\left(x-3\right)x
Tāpirihia te 3 ki te 18, ka 21.
x+21=x^{2}-3x
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te x.
x+21-x^{2}=-3x
Tangohia te x^{2} mai i ngā taha e rua.
x+21-x^{2}+3x=0
Me tāpiri te 3x ki ngā taha e rua.
4x+21-x^{2}=0
Pahekotia te x me 3x, ka 4x.
-x^{2}+4x+21=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\times 21}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 4 mō b, me 21 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-1\right)\times 21}}{2\left(-1\right)}
Pūrua 4.
x=\frac{-4±\sqrt{16+4\times 21}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-4±\sqrt{16+84}}{2\left(-1\right)}
Whakareatia 4 ki te 21.
x=\frac{-4±\sqrt{100}}{2\left(-1\right)}
Tāpiri 16 ki te 84.
x=\frac{-4±10}{2\left(-1\right)}
Tuhia te pūtakerua o te 100.
x=\frac{-4±10}{-2}
Whakareatia 2 ki te -1.
x=\frac{6}{-2}
Nā, me whakaoti te whārite x=\frac{-4±10}{-2} ina he tāpiri te ±. Tāpiri -4 ki te 10.
x=-3
Whakawehe 6 ki te -2.
x=-\frac{14}{-2}
Nā, me whakaoti te whārite x=\frac{-4±10}{-2} ina he tango te ±. Tango 10 mai i -4.
x=7
Whakawehe -14 ki te -2.
x=-3 x=7
Kua oti te whārite te whakatau.
x=7
Tē taea kia ōrite te tāupe x ki -3.
x+3+18=\left(x-3\right)x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x^{2}-9,x+3.
x+21=\left(x-3\right)x
Tāpirihia te 3 ki te 18, ka 21.
x+21=x^{2}-3x
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te x.
x+21-x^{2}=-3x
Tangohia te x^{2} mai i ngā taha e rua.
x+21-x^{2}+3x=0
Me tāpiri te 3x ki ngā taha e rua.
4x+21-x^{2}=0
Pahekotia te x me 3x, ka 4x.
4x-x^{2}=-21
Tangohia te 21 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-x^{2}+4x=-21
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+4x}{-1}=-\frac{21}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{4}{-1}x=-\frac{21}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-4x=-\frac{21}{-1}
Whakawehe 4 ki te -1.
x^{2}-4x=21
Whakawehe -21 ki te -1.
x^{2}-4x+\left(-2\right)^{2}=21+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=21+4
Pūrua -2.
x^{2}-4x+4=25
Tāpiri 21 ki te 4.
\left(x-2\right)^{2}=25
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=5 x-2=-5
Whakarūnātia.
x=7 x=-3
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=7
Tē taea kia ōrite te tāupe x ki -3.