Whakaoti mō x
x=-9
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac{ 1 }{ x+3 } + \frac{ 1 }{ 2 } = \frac{ 1 }{ 3 }
Tohaina
Kua tāruatia ki te papatopenga
6+6\left(x+3\right)\times \frac{1}{2}=2\left(x+3\right)
Tē taea kia ōrite te tāupe x ki -3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+3,2,3.
6+3\left(x+3\right)=2\left(x+3\right)
Whakareatia te 6 ki te \frac{1}{2}, ka 3.
6+3x+9=2\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+3.
15+3x=2\left(x+3\right)
Tāpirihia te 6 ki te 9, ka 15.
15+3x=2x+6
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+3.
15+3x-2x=6
Tangohia te 2x mai i ngā taha e rua.
15+x=6
Pahekotia te 3x me -2x, ka x.
x=6-15
Tangohia te 15 mai i ngā taha e rua.
x=-9
Tangohia te 15 i te 6, ka -9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}