Whakaoti mō x
x=\frac{\sqrt{3}}{3}+1\approx 1.577350269
x=-\frac{\sqrt{3}}{3}+1\approx 0.422649731
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-2-x=3x\left(x-2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x-2.
x-2-x=3x^{2}-6x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-2.
x-2-x-3x^{2}=-6x
Tangohia te 3x^{2} mai i ngā taha e rua.
x-2-x-3x^{2}+6x=0
Me tāpiri te 6x ki ngā taha e rua.
7x-2-x-3x^{2}=0
Pahekotia te x me 6x, ka 7x.
6x-2-3x^{2}=0
Pahekotia te 7x me -x, ka 6x.
-3x^{2}+6x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 6 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
Pūrua 6.
x=\frac{-6±\sqrt{36+12\left(-2\right)}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-6±\sqrt{36-24}}{2\left(-3\right)}
Whakareatia 12 ki te -2.
x=\frac{-6±\sqrt{12}}{2\left(-3\right)}
Tāpiri 36 ki te -24.
x=\frac{-6±2\sqrt{3}}{2\left(-3\right)}
Tuhia te pūtakerua o te 12.
x=\frac{-6±2\sqrt{3}}{-6}
Whakareatia 2 ki te -3.
x=\frac{2\sqrt{3}-6}{-6}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{3}}{-6} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{3}.
x=-\frac{\sqrt{3}}{3}+1
Whakawehe -6+2\sqrt{3} ki te -6.
x=\frac{-2\sqrt{3}-6}{-6}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{3}}{-6} ina he tango te ±. Tango 2\sqrt{3} mai i -6.
x=\frac{\sqrt{3}}{3}+1
Whakawehe -6-2\sqrt{3} ki te -6.
x=-\frac{\sqrt{3}}{3}+1 x=\frac{\sqrt{3}}{3}+1
Kua oti te whārite te whakatau.
x-2-x=3x\left(x-2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x-2.
x-2-x=3x^{2}-6x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-2.
x-2-x-3x^{2}=-6x
Tangohia te 3x^{2} mai i ngā taha e rua.
x-2-x-3x^{2}+6x=0
Me tāpiri te 6x ki ngā taha e rua.
7x-2-x-3x^{2}=0
Pahekotia te x me 6x, ka 7x.
7x-x-3x^{2}=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
6x-3x^{2}=2
Pahekotia te 7x me -x, ka 6x.
-3x^{2}+6x=2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3x^{2}+6x}{-3}=\frac{2}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{6}{-3}x=\frac{2}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-2x=\frac{2}{-3}
Whakawehe 6 ki te -3.
x^{2}-2x=-\frac{2}{3}
Whakawehe 2 ki te -3.
x^{2}-2x+1=-\frac{2}{3}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=\frac{1}{3}
Tāpiri -\frac{2}{3} ki te 1.
\left(x-1\right)^{2}=\frac{1}{3}
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{1}{3}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\frac{\sqrt{3}}{3} x-1=-\frac{\sqrt{3}}{3}
Whakarūnātia.
x=\frac{\sqrt{3}}{3}+1 x=-\frac{\sqrt{3}}{3}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}