Whakaoti mō x
x=-\frac{yz}{z-y}
y\neq 0\text{ and }z\neq 0\text{ and }y\neq z
Whakaoti mō y
y=-\frac{xz}{z-x}
x\neq 0\text{ and }z\neq 0\text{ and }x\neq z
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac{ 1 }{ x } + \frac{ 1 }{ y } = \frac{ 1 }{ z }
Tohaina
Kua tāruatia ki te papatopenga
yz+xz=xy
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te xyz, arā, te tauraro pātahi he tino iti rawa te kitea o x,y,z.
yz+xz-xy=0
Tangohia te xy mai i ngā taha e rua.
xz-xy=-yz
Tangohia te yz mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-xy+xz=-yz
Whakaraupapatia anō ngā kīanga tau.
\left(-y+z\right)x=-yz
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(z-y\right)x=-yz
He hanga arowhānui tō te whārite.
\frac{\left(z-y\right)x}{z-y}=-\frac{yz}{z-y}
Whakawehea ngā taha e rua ki te -y+z.
x=-\frac{yz}{z-y}
Mā te whakawehe ki te -y+z ka wetekia te whakareanga ki te -y+z.
x=-\frac{yz}{z-y}\text{, }x\neq 0
Tē taea kia ōrite te tāupe x ki 0.
yz+xz=xy
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te xyz, arā, te tauraro pātahi he tino iti rawa te kitea o x,y,z.
yz+xz-xy=0
Tangohia te xy mai i ngā taha e rua.
yz-xy=-xz
Tangohia te xz mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-xy+yz=-xz
Whakaraupapatia anō ngā kīanga tau.
\left(-x+z\right)y=-xz
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(z-x\right)y=-xz
He hanga arowhānui tō te whārite.
\frac{\left(z-x\right)y}{z-x}=-\frac{xz}{z-x}
Whakawehea ngā taha e rua ki te z-x.
y=-\frac{xz}{z-x}
Mā te whakawehe ki te z-x ka wetekia te whakareanga ki te z-x.
y=-\frac{xz}{z-x}\text{, }y\neq 0
Tē taea kia ōrite te tāupe y ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}