Whakaoti mō t
t=-\frac{x}{1-x}
x\neq 0\text{ and }x\neq 1
Whakaoti mō x
x=-\frac{t}{1-t}
t\neq 0\text{ and }t\neq 1
Graph
Tohaina
Kua tāruatia ki te papatopenga
t+x=tx
Tē taea kia ōrite te tāupe t ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te tx, arā, te tauraro pātahi he tino iti rawa te kitea o x,t.
t+x-tx=0
Tangohia te tx mai i ngā taha e rua.
t-tx=-x
Tangohia te x mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(1-x\right)t=-x
Pahekotia ngā kīanga tau katoa e whai ana i te t.
\frac{\left(1-x\right)t}{1-x}=-\frac{x}{1-x}
Whakawehea ngā taha e rua ki te 1-x.
t=-\frac{x}{1-x}
Mā te whakawehe ki te 1-x ka wetekia te whakareanga ki te 1-x.
t=-\frac{x}{1-x}\text{, }t\neq 0
Tē taea kia ōrite te tāupe t ki 0.
t+x=tx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te tx, arā, te tauraro pātahi he tino iti rawa te kitea o x,t.
t+x-tx=0
Tangohia te tx mai i ngā taha e rua.
x-tx=-t
Tangohia te t mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(1-t\right)x=-t
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(1-t\right)x}{1-t}=-\frac{t}{1-t}
Whakawehea ngā taha e rua ki te 1-t.
x=-\frac{t}{1-t}
Mā te whakawehe ki te 1-t ka wetekia te whakareanga ki te 1-t.
x=-\frac{t}{1-t}\text{, }x\neq 0
Tē taea kia ōrite te tāupe x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}