Whakaoti mō x
x = \frac{3 \sqrt{69} + 25}{2} \approx 24.959935794
x=\frac{25-3\sqrt{69}}{2}\approx 0.040064206
Graph
Tohaina
Kua tāruatia ki te papatopenga
1=-xx+x\times 25
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
1=-x^{2}+x\times 25
Whakareatia te x ki te x, ka x^{2}.
-x^{2}+x\times 25=1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}+x\times 25-1=0
Tangohia te 1 mai i ngā taha e rua.
-x^{2}+25x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-25±\sqrt{25^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 25 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Pūrua 25.
x=\frac{-25±\sqrt{625+4\left(-1\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-25±\sqrt{625-4}}{2\left(-1\right)}
Whakareatia 4 ki te -1.
x=\frac{-25±\sqrt{621}}{2\left(-1\right)}
Tāpiri 625 ki te -4.
x=\frac{-25±3\sqrt{69}}{2\left(-1\right)}
Tuhia te pūtakerua o te 621.
x=\frac{-25±3\sqrt{69}}{-2}
Whakareatia 2 ki te -1.
x=\frac{3\sqrt{69}-25}{-2}
Nā, me whakaoti te whārite x=\frac{-25±3\sqrt{69}}{-2} ina he tāpiri te ±. Tāpiri -25 ki te 3\sqrt{69}.
x=\frac{25-3\sqrt{69}}{2}
Whakawehe -25+3\sqrt{69} ki te -2.
x=\frac{-3\sqrt{69}-25}{-2}
Nā, me whakaoti te whārite x=\frac{-25±3\sqrt{69}}{-2} ina he tango te ±. Tango 3\sqrt{69} mai i -25.
x=\frac{3\sqrt{69}+25}{2}
Whakawehe -25-3\sqrt{69} ki te -2.
x=\frac{25-3\sqrt{69}}{2} x=\frac{3\sqrt{69}+25}{2}
Kua oti te whārite te whakatau.
1=-xx+x\times 25
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
1=-x^{2}+x\times 25
Whakareatia te x ki te x, ka x^{2}.
-x^{2}+x\times 25=1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}+25x=1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+25x}{-1}=\frac{1}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{25}{-1}x=\frac{1}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-25x=\frac{1}{-1}
Whakawehe 25 ki te -1.
x^{2}-25x=-1
Whakawehe 1 ki te -1.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=-1+\left(-\frac{25}{2}\right)^{2}
Whakawehea te -25, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{25}{2}. Nā, tāpiria te pūrua o te -\frac{25}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-25x+\frac{625}{4}=-1+\frac{625}{4}
Pūruatia -\frac{25}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-25x+\frac{625}{4}=\frac{621}{4}
Tāpiri -1 ki te \frac{625}{4}.
\left(x-\frac{25}{2}\right)^{2}=\frac{621}{4}
Tauwehea te x^{2}-25x+\frac{625}{4}. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{621}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{25}{2}=\frac{3\sqrt{69}}{2} x-\frac{25}{2}=-\frac{3\sqrt{69}}{2}
Whakarūnātia.
x=\frac{3\sqrt{69}+25}{2} x=\frac{25-3\sqrt{69}}{2}
Me tāpiri \frac{25}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}