Whakaoti mō x
x=0.5
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
1=-xx+x\times 2.5
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
1=-x^{2}+x\times 2.5
Whakareatia te x ki te x, ka x^{2}.
-x^{2}+x\times 2.5=1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}+x\times 2.5-1=0
Tangohia te 1 mai i ngā taha e rua.
-x^{2}+2.5x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2.5±\sqrt{2.5^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 2.5 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2.5±\sqrt{6.25-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Pūruatia 2.5 mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-2.5±\sqrt{6.25+4\left(-1\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-2.5±\sqrt{6.25-4}}{2\left(-1\right)}
Whakareatia 4 ki te -1.
x=\frac{-2.5±\sqrt{2.25}}{2\left(-1\right)}
Tāpiri 6.25 ki te -4.
x=\frac{-2.5±\frac{3}{2}}{2\left(-1\right)}
Tuhia te pūtakerua o te 2.25.
x=\frac{-2.5±\frac{3}{2}}{-2}
Whakareatia 2 ki te -1.
x=-\frac{1}{-2}
Nā, me whakaoti te whārite x=\frac{-2.5±\frac{3}{2}}{-2} ina he tāpiri te ±. Tāpiri -2.5 ki te \frac{3}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{2}
Whakawehe -1 ki te -2.
x=-\frac{4}{-2}
Nā, me whakaoti te whārite x=\frac{-2.5±\frac{3}{2}}{-2} ina he tango te ±. Tango \frac{3}{2} mai i -2.5 mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2
Whakawehe -4 ki te -2.
x=\frac{1}{2} x=2
Kua oti te whārite te whakatau.
1=-xx+x\times 2.5
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
1=-x^{2}+x\times 2.5
Whakareatia te x ki te x, ka x^{2}.
-x^{2}+x\times 2.5=1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}+2.5x=1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+2.5x}{-1}=\frac{1}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{2.5}{-1}x=\frac{1}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-2.5x=\frac{1}{-1}
Whakawehe 2.5 ki te -1.
x^{2}-2.5x=-1
Whakawehe 1 ki te -1.
x^{2}-2.5x+\left(-1.25\right)^{2}=-1+\left(-1.25\right)^{2}
Whakawehea te -2.5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1.25. Nā, tāpiria te pūrua o te -1.25 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2.5x+1.5625=-1+1.5625
Pūruatia -1.25 mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-2.5x+1.5625=0.5625
Tāpiri -1 ki te 1.5625.
\left(x-1.25\right)^{2}=0.5625
Tauwehea te x^{2}-2.5x+1.5625. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1.25\right)^{2}}=\sqrt{0.5625}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1.25=\frac{3}{4} x-1.25=-\frac{3}{4}
Whakarūnātia.
x=2 x=\frac{1}{2}
Me tāpiri 1.25 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}