Whakaoti mō u
u=-\frac{vx}{x-v}
v\neq 0\text{ and }x\neq 0\text{ and }x\neq v
Whakaoti mō v
v=-\frac{ux}{x-u}
u\neq 0\text{ and }x\neq 0\text{ and }x\neq u
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac{ 1 }{ x } = \frac{ 1 }{ u } + \frac{ 1 }{ v }
Tohaina
Kua tāruatia ki te papatopenga
uv=vx+ux
Tē taea kia ōrite te tāupe u ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te uvx, arā, te tauraro pātahi he tino iti rawa te kitea o x,u,v.
uv-ux=vx
Tangohia te ux mai i ngā taha e rua.
\left(v-x\right)u=vx
Pahekotia ngā kīanga tau katoa e whai ana i te u.
\frac{\left(v-x\right)u}{v-x}=\frac{vx}{v-x}
Whakawehea ngā taha e rua ki te -x+v.
u=\frac{vx}{v-x}
Mā te whakawehe ki te -x+v ka wetekia te whakareanga ki te -x+v.
u=\frac{vx}{v-x}\text{, }u\neq 0
Tē taea kia ōrite te tāupe u ki 0.
uv=vx+ux
Tē taea kia ōrite te tāupe v ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te uvx, arā, te tauraro pātahi he tino iti rawa te kitea o x,u,v.
uv-vx=ux
Tangohia te vx mai i ngā taha e rua.
\left(u-x\right)v=ux
Pahekotia ngā kīanga tau katoa e whai ana i te v.
\frac{\left(u-x\right)v}{u-x}=\frac{ux}{u-x}
Whakawehea ngā taha e rua ki te -x+u.
v=\frac{ux}{u-x}
Mā te whakawehe ki te -x+u ka wetekia te whakareanga ki te -x+u.
v=\frac{ux}{u-x}\text{, }v\neq 0
Tē taea kia ōrite te tāupe v ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}