Whakaoti mō x
x = -\frac{9}{2} = -4\frac{1}{2} = -4.5
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac{ 1 }{ 9 } { x }^{ 2 } +x+ \frac{ 9 }{ 4 } =0
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{9}x^{2}+x+\frac{9}{4}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{9}\times \frac{9}{4}}}{2\times \frac{1}{9}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{9} mō a, 1 mō b, me \frac{9}{4} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{1}{9}\times \frac{9}{4}}}{2\times \frac{1}{9}}
Pūrua 1.
x=\frac{-1±\sqrt{1-\frac{4}{9}\times \frac{9}{4}}}{2\times \frac{1}{9}}
Whakareatia -4 ki te \frac{1}{9}.
x=\frac{-1±\sqrt{1-1}}{2\times \frac{1}{9}}
Whakareatia -\frac{4}{9} ki te \frac{9}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-1±\sqrt{0}}{2\times \frac{1}{9}}
Tāpiri 1 ki te -1.
x=-\frac{1}{2\times \frac{1}{9}}
Tuhia te pūtakerua o te 0.
x=-\frac{1}{\frac{2}{9}}
Whakareatia 2 ki te \frac{1}{9}.
x=-\frac{9}{2}
Whakawehe -1 ki te \frac{2}{9} mā te whakarea -1 ki te tau huripoki o \frac{2}{9}.
\frac{1}{9}x^{2}+x+\frac{9}{4}=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{1}{9}x^{2}+x+\frac{9}{4}-\frac{9}{4}=-\frac{9}{4}
Me tango \frac{9}{4} mai i ngā taha e rua o te whārite.
\frac{1}{9}x^{2}+x=-\frac{9}{4}
Mā te tango i te \frac{9}{4} i a ia ake anō ka toe ko te 0.
\frac{\frac{1}{9}x^{2}+x}{\frac{1}{9}}=-\frac{\frac{9}{4}}{\frac{1}{9}}
Me whakarea ngā taha e rua ki te 9.
x^{2}+\frac{1}{\frac{1}{9}}x=-\frac{\frac{9}{4}}{\frac{1}{9}}
Mā te whakawehe ki te \frac{1}{9} ka wetekia te whakareanga ki te \frac{1}{9}.
x^{2}+9x=-\frac{\frac{9}{4}}{\frac{1}{9}}
Whakawehe 1 ki te \frac{1}{9} mā te whakarea 1 ki te tau huripoki o \frac{1}{9}.
x^{2}+9x=-\frac{81}{4}
Whakawehe -\frac{9}{4} ki te \frac{1}{9} mā te whakarea -\frac{9}{4} ki te tau huripoki o \frac{1}{9}.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=-\frac{81}{4}+\left(\frac{9}{2}\right)^{2}
Whakawehea te 9, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{9}{2}. Nā, tāpiria te pūrua o te \frac{9}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+9x+\frac{81}{4}=\frac{-81+81}{4}
Pūruatia \frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+9x+\frac{81}{4}=0
Tāpiri -\frac{81}{4} ki te \frac{81}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{9}{2}\right)^{2}=0
Tauwehea x^{2}+9x+\frac{81}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{9}{2}=0 x+\frac{9}{2}=0
Whakarūnātia.
x=-\frac{9}{2} x=-\frac{9}{2}
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
x=-\frac{9}{2}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}