Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{9}x^{2}+x+\frac{9}{4}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{9}\times \frac{9}{4}}}{2\times \frac{1}{9}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{9} mō a, 1 mō b, me \frac{9}{4} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{1}{9}\times \frac{9}{4}}}{2\times \frac{1}{9}}
Pūrua 1.
x=\frac{-1±\sqrt{1-\frac{4}{9}\times \frac{9}{4}}}{2\times \frac{1}{9}}
Whakareatia -4 ki te \frac{1}{9}.
x=\frac{-1±\sqrt{1-1}}{2\times \frac{1}{9}}
Whakareatia -\frac{4}{9} ki te \frac{9}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-1±\sqrt{0}}{2\times \frac{1}{9}}
Tāpiri 1 ki te -1.
x=-\frac{1}{2\times \frac{1}{9}}
Tuhia te pūtakerua o te 0.
x=-\frac{1}{\frac{2}{9}}
Whakareatia 2 ki te \frac{1}{9}.
x=-\frac{9}{2}
Whakawehe -1 ki te \frac{2}{9} mā te whakarea -1 ki te tau huripoki o \frac{2}{9}.
\frac{1}{9}x^{2}+x+\frac{9}{4}=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{1}{9}x^{2}+x+\frac{9}{4}-\frac{9}{4}=-\frac{9}{4}
Me tango \frac{9}{4} mai i ngā taha e rua o te whārite.
\frac{1}{9}x^{2}+x=-\frac{9}{4}
Mā te tango i te \frac{9}{4} i a ia ake anō ka toe ko te 0.
\frac{\frac{1}{9}x^{2}+x}{\frac{1}{9}}=-\frac{\frac{9}{4}}{\frac{1}{9}}
Me whakarea ngā taha e rua ki te 9.
x^{2}+\frac{1}{\frac{1}{9}}x=-\frac{\frac{9}{4}}{\frac{1}{9}}
Mā te whakawehe ki te \frac{1}{9} ka wetekia te whakareanga ki te \frac{1}{9}.
x^{2}+9x=-\frac{\frac{9}{4}}{\frac{1}{9}}
Whakawehe 1 ki te \frac{1}{9} mā te whakarea 1 ki te tau huripoki o \frac{1}{9}.
x^{2}+9x=-\frac{81}{4}
Whakawehe -\frac{9}{4} ki te \frac{1}{9} mā te whakarea -\frac{9}{4} ki te tau huripoki o \frac{1}{9}.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=-\frac{81}{4}+\left(\frac{9}{2}\right)^{2}
Whakawehea te 9, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{9}{2}. Nā, tāpiria te pūrua o te \frac{9}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+9x+\frac{81}{4}=\frac{-81+81}{4}
Pūruatia \frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+9x+\frac{81}{4}=0
Tāpiri -\frac{81}{4} ki te \frac{81}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{9}{2}\right)^{2}=0
Tauwehea x^{2}+9x+\frac{81}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{9}{2}=0 x+\frac{9}{2}=0
Whakarūnātia.
x=-\frac{9}{2} x=-\frac{9}{2}
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
x=-\frac{9}{2}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.