Aromātai
6
Tauwehe
2\times 3
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{8}\left(\left(-3\right)^{2}+\left(147-149\right)^{2}+\left(151-149\right)^{2}+\left(149-149\right)^{2}+\left(148-149\right)^{2}+\left(150-146\right)^{2}+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tangohia te 149 i te 146, ka -3.
\frac{1}{8}\left(9+\left(147-149\right)^{2}+\left(151-149\right)^{2}+\left(149-149\right)^{2}+\left(148-149\right)^{2}+\left(150-146\right)^{2}+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tātaihia te -3 mā te pū o 2, kia riro ko 9.
\frac{1}{8}\left(9+\left(-2\right)^{2}+\left(151-149\right)^{2}+\left(149-149\right)^{2}+\left(148-149\right)^{2}+\left(150-146\right)^{2}+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tangohia te 149 i te 147, ka -2.
\frac{1}{8}\left(9+4+\left(151-149\right)^{2}+\left(149-149\right)^{2}+\left(148-149\right)^{2}+\left(150-146\right)^{2}+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\frac{1}{8}\left(13+\left(151-149\right)^{2}+\left(149-149\right)^{2}+\left(148-149\right)^{2}+\left(150-146\right)^{2}+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tāpirihia te 9 ki te 4, ka 13.
\frac{1}{8}\left(13+2^{2}+\left(149-149\right)^{2}+\left(148-149\right)^{2}+\left(150-146\right)^{2}+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tangohia te 149 i te 151, ka 2.
\frac{1}{8}\left(13+4+\left(149-149\right)^{2}+\left(148-149\right)^{2}+\left(150-146\right)^{2}+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{1}{8}\left(17+\left(149-149\right)^{2}+\left(148-149\right)^{2}+\left(150-146\right)^{2}+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tāpirihia te 13 ki te 4, ka 17.
\frac{1}{8}\left(17+0^{2}+\left(148-149\right)^{2}+\left(150-146\right)^{2}+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tangohia te 149 i te 149, ka 0.
\frac{1}{8}\left(17+0+\left(148-149\right)^{2}+\left(150-146\right)^{2}+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
\frac{1}{8}\left(17+\left(148-149\right)^{2}+\left(150-146\right)^{2}+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tāpirihia te 17 ki te 0, ka 17.
\frac{1}{8}\left(17+\left(-1\right)^{2}+\left(150-146\right)^{2}+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tangohia te 149 i te 148, ka -1.
\frac{1}{8}\left(17+1+\left(150-146\right)^{2}+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
\frac{1}{8}\left(18+\left(150-146\right)^{2}+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tāpirihia te 17 ki te 1, ka 18.
\frac{1}{8}\left(18+4^{2}+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tangohia te 146 i te 150, ka 4.
\frac{1}{8}\left(18+16+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{1}{8}\left(34+\left(151-149\right)^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tāpirihia te 18 ki te 16, ka 34.
\frac{1}{8}\left(34+2^{2}+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tangohia te 149 i te 151, ka 2.
\frac{1}{8}\left(34+4+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{1}{8}\left(38+\left(152-149\right)^{2}+\left(148-149\right)^{2}\right)
Tāpirihia te 34 ki te 4, ka 38.
\frac{1}{8}\left(38+3^{2}+\left(148-149\right)^{2}\right)
Tangohia te 149 i te 152, ka 3.
\frac{1}{8}\left(38+9+\left(148-149\right)^{2}\right)
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{1}{8}\left(47+\left(148-149\right)^{2}\right)
Tāpirihia te 38 ki te 9, ka 47.
\frac{1}{8}\left(47+\left(-1\right)^{2}\right)
Tangohia te 149 i te 148, ka -1.
\frac{1}{8}\left(47+1\right)
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
\frac{1}{8}\times 48
Tāpirihia te 47 ki te 1, ka 48.
6
Whakareatia te \frac{1}{8} ki te 48, ka 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}