Aromātai
0.06
Tauwehe
\frac{3}{2 \cdot 5 ^ {2}} = 0.06
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{8}\left(\left(-0.3\right)^{2}+\left(14.7-14.9\right)^{2}+\left(15.1-14.9\right)^{2}+\left(14.9-14.9\right)^{2}+\left(14.8-14.9\right)^{2}+\left(15-14.6\right)^{2}+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tangohia te 14.9 i te 14.6, ka -0.3.
\frac{1}{8}\left(0.09+\left(14.7-14.9\right)^{2}+\left(15.1-14.9\right)^{2}+\left(14.9-14.9\right)^{2}+\left(14.8-14.9\right)^{2}+\left(15-14.6\right)^{2}+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tātaihia te -0.3 mā te pū o 2, kia riro ko 0.09.
\frac{1}{8}\left(0.09+\left(-0.2\right)^{2}+\left(15.1-14.9\right)^{2}+\left(14.9-14.9\right)^{2}+\left(14.8-14.9\right)^{2}+\left(15-14.6\right)^{2}+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tangohia te 14.9 i te 14.7, ka -0.2.
\frac{1}{8}\left(0.09+0.04+\left(15.1-14.9\right)^{2}+\left(14.9-14.9\right)^{2}+\left(14.8-14.9\right)^{2}+\left(15-14.6\right)^{2}+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tātaihia te -0.2 mā te pū o 2, kia riro ko 0.04.
\frac{1}{8}\left(0.13+\left(15.1-14.9\right)^{2}+\left(14.9-14.9\right)^{2}+\left(14.8-14.9\right)^{2}+\left(15-14.6\right)^{2}+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tāpirihia te 0.09 ki te 0.04, ka 0.13.
\frac{1}{8}\left(0.13+0.2^{2}+\left(14.9-14.9\right)^{2}+\left(14.8-14.9\right)^{2}+\left(15-14.6\right)^{2}+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tangohia te 14.9 i te 15.1, ka 0.2.
\frac{1}{8}\left(0.13+0.04+\left(14.9-14.9\right)^{2}+\left(14.8-14.9\right)^{2}+\left(15-14.6\right)^{2}+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tātaihia te 0.2 mā te pū o 2, kia riro ko 0.04.
\frac{1}{8}\left(0.17+\left(14.9-14.9\right)^{2}+\left(14.8-14.9\right)^{2}+\left(15-14.6\right)^{2}+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tāpirihia te 0.13 ki te 0.04, ka 0.17.
\frac{1}{8}\left(0.17+0^{2}+\left(14.8-14.9\right)^{2}+\left(15-14.6\right)^{2}+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tangohia te 14.9 i te 14.9, ka 0.
\frac{1}{8}\left(0.17+0+\left(14.8-14.9\right)^{2}+\left(15-14.6\right)^{2}+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
\frac{1}{8}\left(0.17+\left(14.8-14.9\right)^{2}+\left(15-14.6\right)^{2}+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tāpirihia te 0.17 ki te 0, ka 0.17.
\frac{1}{8}\left(0.17+\left(-0.1\right)^{2}+\left(15-14.6\right)^{2}+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tangohia te 14.9 i te 14.8, ka -0.1.
\frac{1}{8}\left(0.17+0.01+\left(15-14.6\right)^{2}+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tātaihia te -0.1 mā te pū o 2, kia riro ko 0.01.
\frac{1}{8}\left(0.18+\left(15-14.6\right)^{2}+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tāpirihia te 0.17 ki te 0.01, ka 0.18.
\frac{1}{8}\left(0.18+0.4^{2}+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tangohia te 14.6 i te 15, ka 0.4.
\frac{1}{8}\left(0.18+0.16+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tātaihia te 0.4 mā te pū o 2, kia riro ko 0.16.
\frac{1}{8}\left(0.34+\left(15.1-14.9\right)^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tāpirihia te 0.18 ki te 0.16, ka 0.34.
\frac{1}{8}\left(0.34+0.2^{2}+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tangohia te 14.9 i te 15.1, ka 0.2.
\frac{1}{8}\left(0.34+0.04+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tātaihia te 0.2 mā te pū o 2, kia riro ko 0.04.
\frac{1}{8}\left(0.38+\left(15.2-14.9\right)^{2}+\left(14.8-14.9\right)^{2}\right)
Tāpirihia te 0.34 ki te 0.04, ka 0.38.
\frac{1}{8}\left(0.38+0.3^{2}+\left(14.8-14.9\right)^{2}\right)
Tangohia te 14.9 i te 15.2, ka 0.3.
\frac{1}{8}\left(0.38+0.09+\left(14.8-14.9\right)^{2}\right)
Tātaihia te 0.3 mā te pū o 2, kia riro ko 0.09.
\frac{1}{8}\left(0.47+\left(14.8-14.9\right)^{2}\right)
Tāpirihia te 0.38 ki te 0.09, ka 0.47.
\frac{1}{8}\left(0.47+\left(-0.1\right)^{2}\right)
Tangohia te 14.9 i te 14.8, ka -0.1.
\frac{1}{8}\left(0.47+0.01\right)
Tātaihia te -0.1 mā te pū o 2, kia riro ko 0.01.
\frac{1}{8}\times 0.48
Tāpirihia te 0.47 ki te 0.01, ka 0.48.
\frac{3}{50}
Whakareatia te \frac{1}{8} ki te 0.48, ka \frac{3}{50}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}