Whakaoti mō y
y=\frac{2}{5}=0.4
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac{ 1 }{ 6 } ( \frac{ 6 }{ 5 } -y)= \frac{ 2 }{ 15 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{6}{5}-y=\frac{2}{15}\times 6
Me whakarea ngā taha e rua ki te 6, te tau utu o \frac{1}{6}.
\frac{6}{5}-y=\frac{2\times 6}{15}
Tuhia te \frac{2}{15}\times 6 hei hautanga kotahi.
\frac{6}{5}-y=\frac{12}{15}
Whakareatia te 2 ki te 6, ka 12.
\frac{6}{5}-y=\frac{4}{5}
Whakahekea te hautanga \frac{12}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-y=\frac{4}{5}-\frac{6}{5}
Tangohia te \frac{6}{5} mai i ngā taha e rua.
-y=\frac{4-6}{5}
Tā te mea he rite te tauraro o \frac{4}{5} me \frac{6}{5}, me tango rāua mā te tango i ō raua taurunga.
-y=-\frac{2}{5}
Tangohia te 6 i te 4, ka -2.
y=\frac{2}{5}
Me whakarea ngā taha e rua ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}