Whakaoti mō x
x = -\frac{35}{3} = -11\frac{2}{3} \approx -11.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{5}x-3=5\times \frac{1}{10}x+5\times \frac{1}{10}
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te \frac{1}{10}x+\frac{1}{10}.
\frac{1}{5}x-3=\frac{5}{10}x+5\times \frac{1}{10}
Whakareatia te 5 ki te \frac{1}{10}, ka \frac{5}{10}.
\frac{1}{5}x-3=\frac{1}{2}x+5\times \frac{1}{10}
Whakahekea te hautanga \frac{5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1}{5}x-3=\frac{1}{2}x+\frac{5}{10}
Whakareatia te 5 ki te \frac{1}{10}, ka \frac{5}{10}.
\frac{1}{5}x-3=\frac{1}{2}x+\frac{1}{2}
Whakahekea te hautanga \frac{5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1}{5}x-3-\frac{1}{2}x=\frac{1}{2}
Tangohia te \frac{1}{2}x mai i ngā taha e rua.
-\frac{3}{10}x-3=\frac{1}{2}
Pahekotia te \frac{1}{5}x me -\frac{1}{2}x, ka -\frac{3}{10}x.
-\frac{3}{10}x=\frac{1}{2}+3
Me tāpiri te 3 ki ngā taha e rua.
-\frac{3}{10}x=\frac{1}{2}+\frac{6}{2}
Me tahuri te 3 ki te hautau \frac{6}{2}.
-\frac{3}{10}x=\frac{1+6}{2}
Tā te mea he rite te tauraro o \frac{1}{2} me \frac{6}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{3}{10}x=\frac{7}{2}
Tāpirihia te 1 ki te 6, ka 7.
x=\frac{7}{2}\left(-\frac{10}{3}\right)
Me whakarea ngā taha e rua ki te -\frac{10}{3}, te tau utu o -\frac{3}{10}.
x=\frac{7\left(-10\right)}{2\times 3}
Me whakarea te \frac{7}{2} ki te -\frac{10}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-70}{6}
Mahia ngā whakarea i roto i te hautanga \frac{7\left(-10\right)}{2\times 3}.
x=-\frac{35}{3}
Whakahekea te hautanga \frac{-70}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}