Aromātai
\frac{14}{15}\approx 0.933333333
Tauwehe
\frac{2 \cdot 7}{3 \cdot 5} = 0.9333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{15}-\frac{10}{15}-\left(\frac{-\left(-\frac{1}{2}\right)}{-\frac{1}{4}}-\frac{1}{5}\times \frac{-2}{\frac{1}{3}}-\frac{3}{5}\right)
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{1}{5} me \frac{2}{3} ki te hautau me te tautūnga 15.
\frac{3-10}{15}-\left(\frac{-\left(-\frac{1}{2}\right)}{-\frac{1}{4}}-\frac{1}{5}\times \frac{-2}{\frac{1}{3}}-\frac{3}{5}\right)
Tā te mea he rite te tauraro o \frac{3}{15} me \frac{10}{15}, me tango rāua mā te tango i ō raua taurunga.
-\frac{7}{15}-\left(\frac{-\left(-\frac{1}{2}\right)}{-\frac{1}{4}}-\frac{1}{5}\times \frac{-2}{\frac{1}{3}}-\frac{3}{5}\right)
Tangohia te 10 i te 3, ka -7.
-\frac{7}{15}-\left(\frac{\frac{1}{2}}{-\frac{1}{4}}-\frac{1}{5}\times \frac{-2}{\frac{1}{3}}-\frac{3}{5}\right)
Ko te tauaro o -\frac{1}{2} ko \frac{1}{2}.
-\frac{7}{15}-\left(\frac{1}{2}\left(-4\right)-\frac{1}{5}\times \frac{-2}{\frac{1}{3}}-\frac{3}{5}\right)
Whakawehe \frac{1}{2} ki te -\frac{1}{4} mā te whakarea \frac{1}{2} ki te tau huripoki o -\frac{1}{4}.
-\frac{7}{15}-\left(\frac{-4}{2}-\frac{1}{5}\times \frac{-2}{\frac{1}{3}}-\frac{3}{5}\right)
Whakareatia te \frac{1}{2} ki te -4, ka \frac{-4}{2}.
-\frac{7}{15}-\left(-2-\frac{1}{5}\times \frac{-2}{\frac{1}{3}}-\frac{3}{5}\right)
Whakawehea te -4 ki te 2, kia riro ko -2.
-\frac{7}{15}-\left(-2-\frac{1}{5}\left(-2\right)\times 3-\frac{3}{5}\right)
Whakawehe -2 ki te \frac{1}{3} mā te whakarea -2 ki te tau huripoki o \frac{1}{3}.
-\frac{7}{15}-\left(-2-\frac{1}{5}\left(-6\right)-\frac{3}{5}\right)
Whakareatia te -2 ki te 3, ka -6.
-\frac{7}{15}-\left(-2+\frac{-\left(-6\right)}{5}-\frac{3}{5}\right)
Tuhia te -\frac{1}{5}\left(-6\right) hei hautanga kotahi.
-\frac{7}{15}-\left(-2+\frac{6}{5}-\frac{3}{5}\right)
Whakareatia te -1 ki te -6, ka 6.
-\frac{7}{15}-\left(-\frac{10}{5}+\frac{6}{5}-\frac{3}{5}\right)
Me tahuri te -2 ki te hautau -\frac{10}{5}.
-\frac{7}{15}-\left(\frac{-10+6}{5}-\frac{3}{5}\right)
Tā te mea he rite te tauraro o -\frac{10}{5} me \frac{6}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{7}{15}-\left(-\frac{4}{5}-\frac{3}{5}\right)
Tāpirihia te -10 ki te 6, ka -4.
-\frac{7}{15}-\frac{-4-3}{5}
Tā te mea he rite te tauraro o -\frac{4}{5} me \frac{3}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{7}{15}-\left(-\frac{7}{5}\right)
Tangohia te 3 i te -4, ka -7.
-\frac{7}{15}+\frac{7}{5}
Ko te tauaro o -\frac{7}{5} ko \frac{7}{5}.
-\frac{7}{15}+\frac{21}{15}
Ko te maha noa iti rawa atu o 15 me 5 ko 15. Me tahuri -\frac{7}{15} me \frac{7}{5} ki te hautau me te tautūnga 15.
\frac{-7+21}{15}
Tā te mea he rite te tauraro o -\frac{7}{15} me \frac{21}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{14}{15}
Tāpirihia te -7 ki te 21, ka 14.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}