Whakaoti mō x
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{5}\left(-\frac{1}{4}\right)x+\frac{1}{5}\left(-2\right)+7=\frac{8}{5}x
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{5} ki te -\frac{1}{4}x-2.
\frac{1\left(-1\right)}{5\times 4}x+\frac{1}{5}\left(-2\right)+7=\frac{8}{5}x
Me whakarea te \frac{1}{5} ki te -\frac{1}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-1}{20}x+\frac{1}{5}\left(-2\right)+7=\frac{8}{5}x
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-1\right)}{5\times 4}.
-\frac{1}{20}x+\frac{1}{5}\left(-2\right)+7=\frac{8}{5}x
Ka taea te hautanga \frac{-1}{20} te tuhi anō ko -\frac{1}{20} mā te tango i te tohu tōraro.
-\frac{1}{20}x+\frac{-2}{5}+7=\frac{8}{5}x
Whakareatia te \frac{1}{5} ki te -2, ka \frac{-2}{5}.
-\frac{1}{20}x-\frac{2}{5}+7=\frac{8}{5}x
Ka taea te hautanga \frac{-2}{5} te tuhi anō ko -\frac{2}{5} mā te tango i te tohu tōraro.
-\frac{1}{20}x-\frac{2}{5}+\frac{35}{5}=\frac{8}{5}x
Me tahuri te 7 ki te hautau \frac{35}{5}.
-\frac{1}{20}x+\frac{-2+35}{5}=\frac{8}{5}x
Tā te mea he rite te tauraro o -\frac{2}{5} me \frac{35}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{1}{20}x+\frac{33}{5}=\frac{8}{5}x
Tāpirihia te -2 ki te 35, ka 33.
-\frac{1}{20}x+\frac{33}{5}-\frac{8}{5}x=0
Tangohia te \frac{8}{5}x mai i ngā taha e rua.
-\frac{33}{20}x+\frac{33}{5}=0
Pahekotia te -\frac{1}{20}x me -\frac{8}{5}x, ka -\frac{33}{20}x.
-\frac{33}{20}x=-\frac{33}{5}
Tangohia te \frac{33}{5} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=-\frac{33}{5}\left(-\frac{20}{33}\right)
Me whakarea ngā taha e rua ki te -\frac{20}{33}, te tau utu o -\frac{33}{20}.
x=\frac{-33\left(-20\right)}{5\times 33}
Me whakarea te -\frac{33}{5} ki te -\frac{20}{33} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{660}{165}
Mahia ngā whakarea i roto i te hautanga \frac{-33\left(-20\right)}{5\times 33}.
x=4
Whakawehea te 660 ki te 165, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}