Whakaoti mō x
x = \frac{9}{2} = 4\frac{1}{2} = 4.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-12\left(\frac{2}{3}x-\left(\frac{1-x}{2}+1\right)\right)=9\left(1-x\right)
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,3,2.
3x-12\left(\frac{2}{3}x-\frac{1-x}{2}-1\right)=9\left(1-x\right)
Hei kimi i te tauaro o \frac{1-x}{2}+1, kimihia te tauaro o ia taurangi.
3x-12\left(\frac{2}{3}x-\frac{1-x}{2}-1\right)=9-9x
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te 1-x.
3x-12\left(\frac{2}{3}x-\left(\frac{1}{2}-\frac{1}{2}x\right)-1\right)=9-9x
Whakawehea ia wā o 1-x ki te 2, kia riro ko \frac{1}{2}-\frac{1}{2}x.
3x-12\left(\frac{2}{3}x-\frac{1}{2}-\left(-\frac{1}{2}x\right)-1\right)=9-9x
Hei kimi i te tauaro o \frac{1}{2}-\frac{1}{2}x, kimihia te tauaro o ia taurangi.
3x-12\left(\frac{2}{3}x-\frac{1}{2}+\frac{1}{2}x-1\right)=9-9x
Ko te tauaro o -\frac{1}{2}x ko \frac{1}{2}x.
3x-12\left(\frac{7}{6}x-\frac{1}{2}-1\right)=9-9x
Pahekotia te \frac{2}{3}x me \frac{1}{2}x, ka \frac{7}{6}x.
3x-12\left(\frac{7}{6}x-\frac{1}{2}-\frac{2}{2}\right)=9-9x
Me tahuri te 1 ki te hautau \frac{2}{2}.
3x-12\left(\frac{7}{6}x+\frac{-1-2}{2}\right)=9-9x
Tā te mea he rite te tauraro o -\frac{1}{2} me \frac{2}{2}, me tango rāua mā te tango i ō raua taurunga.
3x-12\left(\frac{7}{6}x-\frac{3}{2}\right)=9-9x
Tangohia te 2 i te -1, ka -3.
3x-12\times \frac{7}{6}x-12\left(-\frac{3}{2}\right)=9-9x
Whakamahia te āhuatanga tohatoha hei whakarea te -12 ki te \frac{7}{6}x-\frac{3}{2}.
3x+\frac{-12\times 7}{6}x-12\left(-\frac{3}{2}\right)=9-9x
Tuhia te -12\times \frac{7}{6} hei hautanga kotahi.
3x+\frac{-84}{6}x-12\left(-\frac{3}{2}\right)=9-9x
Whakareatia te -12 ki te 7, ka -84.
3x-14x-12\left(-\frac{3}{2}\right)=9-9x
Whakawehea te -84 ki te 6, kia riro ko -14.
3x-14x+\frac{-12\left(-3\right)}{2}=9-9x
Tuhia te -12\left(-\frac{3}{2}\right) hei hautanga kotahi.
3x-14x+\frac{36}{2}=9-9x
Whakareatia te -12 ki te -3, ka 36.
3x-14x+18=9-9x
Whakawehea te 36 ki te 2, kia riro ko 18.
-11x+18=9-9x
Pahekotia te 3x me -14x, ka -11x.
-11x+18+9x=9
Me tāpiri te 9x ki ngā taha e rua.
-2x+18=9
Pahekotia te -11x me 9x, ka -2x.
-2x=9-18
Tangohia te 18 mai i ngā taha e rua.
-2x=-9
Tangohia te 18 i te 9, ka -9.
x=\frac{-9}{-2}
Whakawehea ngā taha e rua ki te -2.
x=\frac{9}{2}
Ka taea te hautanga \frac{-9}{-2} te whakamāmā ki te \frac{9}{2} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}