Whakaoti mō x
x=-\frac{1}{23}\approx -0.043478261
Graph
Tohaina
Kua tāruatia ki te papatopenga
6+48x-3\left(3x-1\right)=\frac{8}{3}\left(x+2\right)-48x
Me whakarea ngā taha e rua o te whārite ki te 24, arā, te tauraro pātahi he tino iti rawa te kitea o 4,8,3,6.
6+48x-9x+3=\frac{8}{3}\left(x+2\right)-48x
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 3x-1.
6+39x+3=\frac{8}{3}\left(x+2\right)-48x
Pahekotia te 48x me -9x, ka 39x.
9+39x=\frac{8}{3}\left(x+2\right)-48x
Tāpirihia te 6 ki te 3, ka 9.
9+39x=\frac{8}{3}x+\frac{8}{3}\times 2-48x
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{8}{3} ki te x+2.
9+39x=\frac{8}{3}x+\frac{8\times 2}{3}-48x
Tuhia te \frac{8}{3}\times 2 hei hautanga kotahi.
9+39x=\frac{8}{3}x+\frac{16}{3}-48x
Whakareatia te 8 ki te 2, ka 16.
9+39x=-\frac{136}{3}x+\frac{16}{3}
Pahekotia te \frac{8}{3}x me -48x, ka -\frac{136}{3}x.
9+39x+\frac{136}{3}x=\frac{16}{3}
Me tāpiri te \frac{136}{3}x ki ngā taha e rua.
9+\frac{253}{3}x=\frac{16}{3}
Pahekotia te 39x me \frac{136}{3}x, ka \frac{253}{3}x.
\frac{253}{3}x=\frac{16}{3}-9
Tangohia te 9 mai i ngā taha e rua.
\frac{253}{3}x=\frac{16}{3}-\frac{27}{3}
Me tahuri te 9 ki te hautau \frac{27}{3}.
\frac{253}{3}x=\frac{16-27}{3}
Tā te mea he rite te tauraro o \frac{16}{3} me \frac{27}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{253}{3}x=-\frac{11}{3}
Tangohia te 27 i te 16, ka -11.
x=-\frac{11}{3}\times \frac{3}{253}
Me whakarea ngā taha e rua ki te \frac{3}{253}, te tau utu o \frac{253}{3}.
x=\frac{-11\times 3}{3\times 253}
Me whakarea te -\frac{11}{3} ki te \frac{3}{253} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-11}{253}
Me whakakore tahi te 3 i te taurunga me te tauraro.
x=-\frac{1}{23}
Whakahekea te hautanga \frac{-11}{253} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}