Aromātai
\frac{\sqrt{5}}{3}-\frac{\sqrt{7}}{2}\approx -0.577519663
Tauwehe
\frac{2 \sqrt{5} - 3 \sqrt{7}}{6} = -0.5775196630323655
Pātaitai
Arithmetic
\frac{ 1 }{ 4 } \sqrt{ 80 } - \frac{ 1 }{ 6 } \sqrt{ 63 } - \frac{ 1 }{ 9 } \sqrt{ 180 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}\times 4\sqrt{5}-\frac{1}{6}\sqrt{63}-\frac{1}{9}\sqrt{180}
Tauwehea te 80=4^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 5} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{5}. Tuhia te pūtakerua o te 4^{2}.
\sqrt{5}-\frac{1}{6}\sqrt{63}-\frac{1}{9}\sqrt{180}
Me whakakore te 4 me te 4.
\sqrt{5}-\frac{1}{6}\times 3\sqrt{7}-\frac{1}{9}\sqrt{180}
Tauwehea te 63=3^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 7} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{7}. Tuhia te pūtakerua o te 3^{2}.
\sqrt{5}+\frac{-3}{6}\sqrt{7}-\frac{1}{9}\sqrt{180}
Tuhia te -\frac{1}{6}\times 3 hei hautanga kotahi.
\sqrt{5}-\frac{1}{2}\sqrt{7}-\frac{1}{9}\sqrt{180}
Whakahekea te hautanga \frac{-3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\sqrt{5}-\frac{1}{2}\sqrt{7}-\frac{1}{9}\times 6\sqrt{5}
Tauwehea te 180=6^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 5} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{5}. Tuhia te pūtakerua o te 6^{2}.
\sqrt{5}-\frac{1}{2}\sqrt{7}+\frac{-6}{9}\sqrt{5}
Tuhia te -\frac{1}{9}\times 6 hei hautanga kotahi.
\sqrt{5}-\frac{1}{2}\sqrt{7}-\frac{2}{3}\sqrt{5}
Whakahekea te hautanga \frac{-6}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1}{3}\sqrt{5}-\frac{1}{2}\sqrt{7}
Pahekotia te \sqrt{5} me -\frac{2}{3}\sqrt{5}, ka \frac{1}{3}\sqrt{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}