Whakaoti mō x
x=2\sqrt{33}+2\approx 13.489125293
x=2-2\sqrt{33}\approx -9.489125293
Graph
Tohaina
Kua tāruatia ki te papatopenga
4^{2}+\left(8-x\right)^{2}+\left(4+x\right)^{2}=88\times 4
Me whakarea ngā taha e rua ki te 4, te tau utu o \frac{1}{4}.
4^{2}+\left(8-x\right)^{2}+\left(4+x\right)^{2}=352
Whakareatia te 88 ki te 4, ka 352.
16+\left(8-x\right)^{2}+\left(4+x\right)^{2}=352
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16+64-16x+x^{2}+\left(4+x\right)^{2}=352
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(8-x\right)^{2}.
80-16x+x^{2}+\left(4+x\right)^{2}=352
Tāpirihia te 16 ki te 64, ka 80.
80-16x+x^{2}+16+8x+x^{2}=352
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(4+x\right)^{2}.
96-16x+x^{2}+8x+x^{2}=352
Tāpirihia te 80 ki te 16, ka 96.
96-8x+x^{2}+x^{2}=352
Pahekotia te -16x me 8x, ka -8x.
96-8x+2x^{2}=352
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
96-8x+2x^{2}-352=0
Tangohia te 352 mai i ngā taha e rua.
-256-8x+2x^{2}=0
Tangohia te 352 i te 96, ka -256.
2x^{2}-8x-256=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-256\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -8 mō b, me -256 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-256\right)}}{2\times 2}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-256\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-8\right)±\sqrt{64+2048}}{2\times 2}
Whakareatia -8 ki te -256.
x=\frac{-\left(-8\right)±\sqrt{2112}}{2\times 2}
Tāpiri 64 ki te 2048.
x=\frac{-\left(-8\right)±8\sqrt{33}}{2\times 2}
Tuhia te pūtakerua o te 2112.
x=\frac{8±8\sqrt{33}}{2\times 2}
Ko te tauaro o -8 ko 8.
x=\frac{8±8\sqrt{33}}{4}
Whakareatia 2 ki te 2.
x=\frac{8\sqrt{33}+8}{4}
Nā, me whakaoti te whārite x=\frac{8±8\sqrt{33}}{4} ina he tāpiri te ±. Tāpiri 8 ki te 8\sqrt{33}.
x=2\sqrt{33}+2
Whakawehe 8+8\sqrt{33} ki te 4.
x=\frac{8-8\sqrt{33}}{4}
Nā, me whakaoti te whārite x=\frac{8±8\sqrt{33}}{4} ina he tango te ±. Tango 8\sqrt{33} mai i 8.
x=2-2\sqrt{33}
Whakawehe 8-8\sqrt{33} ki te 4.
x=2\sqrt{33}+2 x=2-2\sqrt{33}
Kua oti te whārite te whakatau.
4^{2}+\left(8-x\right)^{2}+\left(4+x\right)^{2}=88\times 4
Me whakarea ngā taha e rua ki te 4, te tau utu o \frac{1}{4}.
4^{2}+\left(8-x\right)^{2}+\left(4+x\right)^{2}=352
Whakareatia te 88 ki te 4, ka 352.
16+\left(8-x\right)^{2}+\left(4+x\right)^{2}=352
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16+64-16x+x^{2}+\left(4+x\right)^{2}=352
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(8-x\right)^{2}.
80-16x+x^{2}+\left(4+x\right)^{2}=352
Tāpirihia te 16 ki te 64, ka 80.
80-16x+x^{2}+16+8x+x^{2}=352
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(4+x\right)^{2}.
96-16x+x^{2}+8x+x^{2}=352
Tāpirihia te 80 ki te 16, ka 96.
96-8x+x^{2}+x^{2}=352
Pahekotia te -16x me 8x, ka -8x.
96-8x+2x^{2}=352
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
-8x+2x^{2}=352-96
Tangohia te 96 mai i ngā taha e rua.
-8x+2x^{2}=256
Tangohia te 96 i te 352, ka 256.
2x^{2}-8x=256
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2x^{2}-8x}{2}=\frac{256}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{256}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-4x=\frac{256}{2}
Whakawehe -8 ki te 2.
x^{2}-4x=128
Whakawehe 256 ki te 2.
x^{2}-4x+\left(-2\right)^{2}=128+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=128+4
Pūrua -2.
x^{2}-4x+4=132
Tāpiri 128 ki te 4.
\left(x-2\right)^{2}=132
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{132}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=2\sqrt{33} x-2=-2\sqrt{33}
Whakarūnātia.
x=2\sqrt{33}+2 x=2-2\sqrt{33}
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}