Whakaoti mō x
x = -\frac{19}{3} = -6\frac{1}{3} \approx -6.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
1+3\left(x+4\right)\left(-2\right)=3\times 5
Tē taea kia ōrite te tāupe x ki -4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x+4\right), arā, te tauraro pātahi he tino iti rawa te kitea o 3x+12,x+4.
1-6\left(x+4\right)=3\times 5
Whakareatia te 3 ki te -2, ka -6.
1-6x-24=3\times 5
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te x+4.
-23-6x=3\times 5
Tangohia te 24 i te 1, ka -23.
-23-6x=15
Whakareatia te 3 ki te 5, ka 15.
-6x=15+23
Me tāpiri te 23 ki ngā taha e rua.
-6x=38
Tāpirihia te 15 ki te 23, ka 38.
x=\frac{38}{-6}
Whakawehea ngā taha e rua ki te -6.
x=-\frac{19}{3}
Whakahekea te hautanga \frac{38}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}