Aromātai
\frac{377}{336}\approx 1.12202381
Tauwehe
\frac{13 \cdot 29}{3 \cdot 7 \cdot 2 ^ {4}} = 1\frac{41}{336} = 1.1220238095238095
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ 1 }{ 3.2 } + \frac{ 1 }{ 3 } + \frac{ 1 }{ 2.1 } \div 1
Tohaina
Kua tāruatia ki te papatopenga
\frac{10}{32}+\frac{1}{3}+\frac{\frac{1}{2.1}}{1}
Whakarohaina te \frac{1}{3.2} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{5}{16}+\frac{1}{3}+\frac{\frac{1}{2.1}}{1}
Whakahekea te hautanga \frac{10}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{15}{48}+\frac{16}{48}+\frac{\frac{1}{2.1}}{1}
Ko te maha noa iti rawa atu o 16 me 3 ko 48. Me tahuri \frac{5}{16} me \frac{1}{3} ki te hautau me te tautūnga 48.
\frac{15+16}{48}+\frac{\frac{1}{2.1}}{1}
Tā te mea he rite te tauraro o \frac{15}{48} me \frac{16}{48}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{31}{48}+\frac{\frac{1}{2.1}}{1}
Tāpirihia te 15 ki te 16, ka 31.
\frac{31}{48}+\frac{\frac{10}{21}}{1}
Whakarohaina te \frac{1}{2.1} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{31}{48}+\frac{10}{21}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{217}{336}+\frac{160}{336}
Ko te maha noa iti rawa atu o 48 me 21 ko 336. Me tahuri \frac{31}{48} me \frac{10}{21} ki te hautau me te tautūnga 336.
\frac{217+160}{336}
Tā te mea he rite te tauraro o \frac{217}{336} me \frac{160}{336}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{377}{336}
Tāpirihia te 217 ki te 160, ka 377.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}