Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\sqrt{3}-3\sqrt{2}}{\left(3\sqrt{3}+3\sqrt{2}\right)\left(3\sqrt{3}-3\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{1}{3\sqrt{3}+3\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 3\sqrt{3}-3\sqrt{2}.
\frac{3\sqrt{3}-3\sqrt{2}}{\left(3\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}
Whakaarohia te \left(3\sqrt{3}+3\sqrt{2}\right)\left(3\sqrt{3}-3\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{3}-3\sqrt{2}}{3^{2}\left(\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}
Whakarohaina te \left(3\sqrt{3}\right)^{2}.
\frac{3\sqrt{3}-3\sqrt{2}}{9\left(\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{3\sqrt{3}-3\sqrt{2}}{9\times 3-\left(3\sqrt{2}\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{3\sqrt{3}-3\sqrt{2}}{27-\left(3\sqrt{2}\right)^{2}}
Whakareatia te 9 ki te 3, ka 27.
\frac{3\sqrt{3}-3\sqrt{2}}{27-3^{2}\left(\sqrt{2}\right)^{2}}
Whakarohaina te \left(3\sqrt{2}\right)^{2}.
\frac{3\sqrt{3}-3\sqrt{2}}{27-9\left(\sqrt{2}\right)^{2}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{3\sqrt{3}-3\sqrt{2}}{27-9\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{3\sqrt{3}-3\sqrt{2}}{27-18}
Whakareatia te 9 ki te 2, ka 18.
\frac{3\sqrt{3}-3\sqrt{2}}{9}
Tangohia te 18 i te 27, ka 9.