Whakaoti mō m
m=-\frac{2}{3}\approx -0.666666667
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}-\frac{1}{2}m-\frac{1}{6}m=\frac{7}{9}
Tangohia te \frac{1}{6}m mai i ngā taha e rua.
\frac{1}{3}-\frac{2}{3}m=\frac{7}{9}
Pahekotia te -\frac{1}{2}m me -\frac{1}{6}m, ka -\frac{2}{3}m.
-\frac{2}{3}m=\frac{7}{9}-\frac{1}{3}
Tangohia te \frac{1}{3} mai i ngā taha e rua.
-\frac{2}{3}m=\frac{7}{9}-\frac{3}{9}
Ko te maha noa iti rawa atu o 9 me 3 ko 9. Me tahuri \frac{7}{9} me \frac{1}{3} ki te hautau me te tautūnga 9.
-\frac{2}{3}m=\frac{7-3}{9}
Tā te mea he rite te tauraro o \frac{7}{9} me \frac{3}{9}, me tango rāua mā te tango i ō raua taurunga.
-\frac{2}{3}m=\frac{4}{9}
Tangohia te 3 i te 7, ka 4.
m=\frac{4}{9}\left(-\frac{3}{2}\right)
Me whakarea ngā taha e rua ki te -\frac{3}{2}, te tau utu o -\frac{2}{3}.
m=\frac{4\left(-3\right)}{9\times 2}
Me whakarea te \frac{4}{9} ki te -\frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
m=\frac{-12}{18}
Mahia ngā whakarea i roto i te hautanga \frac{4\left(-3\right)}{9\times 2}.
m=-\frac{2}{3}
Whakahekea te hautanga \frac{-12}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}