Whakaoti mō x
x=-\frac{2y}{3}+\frac{2\sqrt{z}}{3}-\frac{13}{9}
z\geq 0
Whakaoti mō y
y=-\frac{3x}{2}+\sqrt{z}-\frac{13}{6}
z\geq 0
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}+3x+2y-\sqrt{4z}+4=0
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{13}{3}+3x+2y-\sqrt{4z}=0
Tāpirihia te \frac{1}{3} ki te 4, ka \frac{13}{3}.
3x+2y-\sqrt{4z}=-\frac{13}{3}
Tangohia te \frac{13}{3} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3x-\sqrt{4z}=-\frac{13}{3}-2y
Tangohia te 2y mai i ngā taha e rua.
3x=-\frac{13}{3}-2y+\sqrt{4z}
Me tāpiri te \sqrt{4z} ki ngā taha e rua.
3x=-2y+\sqrt{4z}-\frac{13}{3}
He hanga arowhānui tō te whārite.
\frac{3x}{3}=\frac{-2y+2\sqrt{z}-\frac{13}{3}}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{-2y+2\sqrt{z}-\frac{13}{3}}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x=-\frac{2y}{3}+\frac{2\sqrt{z}}{3}-\frac{13}{9}
Whakawehe -\frac{13}{3}-2y+2\sqrt{z} ki te 3.
\frac{1}{3}+3x+2y-\sqrt{4z}+4=0
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{13}{3}+3x+2y-\sqrt{4z}=0
Tāpirihia te \frac{1}{3} ki te 4, ka \frac{13}{3}.
3x+2y-\sqrt{4z}=-\frac{13}{3}
Tangohia te \frac{13}{3} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2y-\sqrt{4z}=-\frac{13}{3}-3x
Tangohia te 3x mai i ngā taha e rua.
2y=-\frac{13}{3}-3x+\sqrt{4z}
Me tāpiri te \sqrt{4z} ki ngā taha e rua.
2y=-3x+\sqrt{4z}-\frac{13}{3}
He hanga arowhānui tō te whārite.
\frac{2y}{2}=\frac{-3x+2\sqrt{z}-\frac{13}{3}}{2}
Whakawehea ngā taha e rua ki te 2.
y=\frac{-3x+2\sqrt{z}-\frac{13}{3}}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
y=-\frac{3x}{2}+\sqrt{z}-\frac{13}{6}
Whakawehe -\frac{13}{3}-3x+2\sqrt{z} ki te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}