Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{3}+3x+2y-\sqrt{4z}+4=0
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{13}{3}+3x+2y-\sqrt{4z}=0
Tāpirihia te \frac{1}{3} ki te 4, ka \frac{13}{3}.
3x+2y-\sqrt{4z}=-\frac{13}{3}
Tangohia te \frac{13}{3} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3x-\sqrt{4z}=-\frac{13}{3}-2y
Tangohia te 2y mai i ngā taha e rua.
3x=-\frac{13}{3}-2y+\sqrt{4z}
Me tāpiri te \sqrt{4z} ki ngā taha e rua.
3x=-2y+\sqrt{4z}-\frac{13}{3}
He hanga arowhānui tō te whārite.
\frac{3x}{3}=\frac{-2y+2\sqrt{z}-\frac{13}{3}}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{-2y+2\sqrt{z}-\frac{13}{3}}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x=-\frac{2y}{3}+\frac{2\sqrt{z}}{3}-\frac{13}{9}
Whakawehe -\frac{13}{3}-2y+2\sqrt{z} ki te 3.
\frac{1}{3}+3x+2y-\sqrt{4z}+4=0
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{13}{3}+3x+2y-\sqrt{4z}=0
Tāpirihia te \frac{1}{3} ki te 4, ka \frac{13}{3}.
3x+2y-\sqrt{4z}=-\frac{13}{3}
Tangohia te \frac{13}{3} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2y-\sqrt{4z}=-\frac{13}{3}-3x
Tangohia te 3x mai i ngā taha e rua.
2y=-\frac{13}{3}-3x+\sqrt{4z}
Me tāpiri te \sqrt{4z} ki ngā taha e rua.
2y=-3x+\sqrt{4z}-\frac{13}{3}
He hanga arowhānui tō te whārite.
\frac{2y}{2}=\frac{-3x+2\sqrt{z}-\frac{13}{3}}{2}
Whakawehea ngā taha e rua ki te 2.
y=\frac{-3x+2\sqrt{z}-\frac{13}{3}}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
y=-\frac{3x}{2}+\sqrt{z}-\frac{13}{6}
Whakawehe -\frac{13}{3}-3x+2\sqrt{z} ki te 2.