Aromātai
\frac{11}{12}\approx 0.916666667
Tauwehe
\frac{11}{2 ^ {2} \cdot 3} = 0.9166666666666666
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}+\frac{6+5}{6}-\frac{1\times 4+1}{4}
Whakareatia te 1 ki te 6, ka 6.
\frac{1}{3}+\frac{11}{6}-\frac{1\times 4+1}{4}
Tāpirihia te 6 ki te 5, ka 11.
\frac{2}{6}+\frac{11}{6}-\frac{1\times 4+1}{4}
Ko te maha noa iti rawa atu o 3 me 6 ko 6. Me tahuri \frac{1}{3} me \frac{11}{6} ki te hautau me te tautūnga 6.
\frac{2+11}{6}-\frac{1\times 4+1}{4}
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{11}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{13}{6}-\frac{1\times 4+1}{4}
Tāpirihia te 2 ki te 11, ka 13.
\frac{13}{6}-\frac{4+1}{4}
Whakareatia te 1 ki te 4, ka 4.
\frac{13}{6}-\frac{5}{4}
Tāpirihia te 4 ki te 1, ka 5.
\frac{26}{12}-\frac{15}{12}
Ko te maha noa iti rawa atu o 6 me 4 ko 12. Me tahuri \frac{13}{6} me \frac{5}{4} ki te hautau me te tautūnga 12.
\frac{26-15}{12}
Tā te mea he rite te tauraro o \frac{26}{12} me \frac{15}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{11}{12}
Tangohia te 15 i te 26, ka 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}