Aromātai
282600
Tauwehe
2^{3}\times 3^{2}\times 5^{2}\times 157
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ 1 }{ 3 } \times 314 \times 5 \times 5 \times 9 \times 12
Tohaina
Kua tāruatia ki te papatopenga
\frac{314}{3}\times 5\times 5\times 9\times 12
Whakareatia te \frac{1}{3} ki te 314, ka \frac{314}{3}.
\frac{314\times 5}{3}\times 5\times 9\times 12
Tuhia te \frac{314}{3}\times 5 hei hautanga kotahi.
\frac{1570}{3}\times 5\times 9\times 12
Whakareatia te 314 ki te 5, ka 1570.
\frac{1570\times 5}{3}\times 9\times 12
Tuhia te \frac{1570}{3}\times 5 hei hautanga kotahi.
\frac{7850}{3}\times 9\times 12
Whakareatia te 1570 ki te 5, ka 7850.
\frac{7850\times 9}{3}\times 12
Tuhia te \frac{7850}{3}\times 9 hei hautanga kotahi.
\frac{70650}{3}\times 12
Whakareatia te 7850 ki te 9, ka 70650.
23550\times 12
Whakawehea te 70650 ki te 3, kia riro ko 23550.
282600
Whakareatia te 23550 ki te 12, ka 282600.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}