Aromātai
\frac{8999083}{9375}\approx 959.902186667
Tauwehe
\frac{31 \cdot 157 \cdot 43 ^ {2}}{3 \cdot 5 ^ {5}} = 959\frac{8458}{9375} = 959.9021866666667
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ 1 }{ 3 } \times 3.14 \times 8.6 \times 8.6 \times 12.4
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}\times \frac{157}{50}\times 8.6\times 8.6\times 12.4
Me tahuri ki tau ā-ira 3.14 ki te hautau \frac{314}{100}. Whakahekea te hautanga \frac{314}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1\times 157}{3\times 50}\times 8.6\times 8.6\times 12.4
Me whakarea te \frac{1}{3} ki te \frac{157}{50} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{157}{150}\times 8.6\times 8.6\times 12.4
Mahia ngā whakarea i roto i te hautanga \frac{1\times 157}{3\times 50}.
\frac{157}{150}\times \frac{43}{5}\times 8.6\times 12.4
Me tahuri ki tau ā-ira 8.6 ki te hautau \frac{86}{10}. Whakahekea te hautanga \frac{86}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{157\times 43}{150\times 5}\times 8.6\times 12.4
Me whakarea te \frac{157}{150} ki te \frac{43}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{6751}{750}\times 8.6\times 12.4
Mahia ngā whakarea i roto i te hautanga \frac{157\times 43}{150\times 5}.
\frac{6751}{750}\times \frac{43}{5}\times 12.4
Me tahuri ki tau ā-ira 8.6 ki te hautau \frac{86}{10}. Whakahekea te hautanga \frac{86}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{6751\times 43}{750\times 5}\times 12.4
Me whakarea te \frac{6751}{750} ki te \frac{43}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{290293}{3750}\times 12.4
Mahia ngā whakarea i roto i te hautanga \frac{6751\times 43}{750\times 5}.
\frac{290293}{3750}\times \frac{62}{5}
Me tahuri ki tau ā-ira 12.4 ki te hautau \frac{124}{10}. Whakahekea te hautanga \frac{124}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{290293\times 62}{3750\times 5}
Me whakarea te \frac{290293}{3750} ki te \frac{62}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{17998166}{18750}
Mahia ngā whakarea i roto i te hautanga \frac{290293\times 62}{3750\times 5}.
\frac{8999083}{9375}
Whakahekea te hautanga \frac{17998166}{18750} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}