Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{3}\times 3\sqrt{3}+\frac{3}{4}\sqrt{48}+\frac{1}{2}\sqrt{12}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\sqrt{3}+\frac{3}{4}\sqrt{48}+\frac{1}{2}\sqrt{12}
Me whakakore te 3 me te 3.
\sqrt{3}+\frac{3}{4}\times 4\sqrt{3}+\frac{1}{2}\sqrt{12}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\sqrt{3}+3\sqrt{3}+\frac{1}{2}\sqrt{12}
Me whakakore te 4 me te 4.
4\sqrt{3}+\frac{1}{2}\sqrt{12}
Pahekotia te \sqrt{3} me 3\sqrt{3}, ka 4\sqrt{3}.
4\sqrt{3}+\frac{1}{2}\times 2\sqrt{3}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
4\sqrt{3}+\sqrt{3}
Me whakakore te 2 me te 2.
5\sqrt{3}
Pahekotia te 4\sqrt{3} me \sqrt{3}, ka 5\sqrt{3}.