Aromātai
-\frac{184}{3}\approx -61.333333333
Tauwehe
-\frac{184}{3} = -61\frac{1}{3} = -61.333333333333336
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}\times 2-\frac{16}{\frac{1}{4}}+2
Whakawehe \frac{1}{3} ki te \frac{1}{2} mā te whakarea \frac{1}{3} ki te tau huripoki o \frac{1}{2}.
\frac{2}{3}-\frac{16}{\frac{1}{4}}+2
Whakareatia te \frac{1}{3} ki te 2, ka \frac{2}{3}.
\frac{2}{3}-16\times 4+2
Whakawehe 16 ki te \frac{1}{4} mā te whakarea 16 ki te tau huripoki o \frac{1}{4}.
\frac{2}{3}-64+2
Whakareatia te 16 ki te 4, ka 64.
\frac{2}{3}-\frac{192}{3}+2
Me tahuri te 64 ki te hautau \frac{192}{3}.
\frac{2-192}{3}+2
Tā te mea he rite te tauraro o \frac{2}{3} me \frac{192}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{190}{3}+2
Tangohia te 192 i te 2, ka -190.
-\frac{190}{3}+\frac{6}{3}
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{-190+6}{3}
Tā te mea he rite te tauraro o -\frac{190}{3} me \frac{6}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{184}{3}
Tāpirihia te -190 ki te 6, ka -184.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}