Whakaoti mō x
x=-3
x=\frac{2}{3}\approx 0.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-\left(6-x\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2-x,x-2,3x^{2}-12.
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-\left(6-x\right)
Whakareatia te 3 ki te -1, ka -3.
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-\left(6-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-2.
-6-3x-3x^{2}+12=3x+6-\left(6-x\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te -3x+6 ki te x+2 ka whakakotahi i ngā kupu rite.
6-3x-3x^{2}=3x+6-\left(6-x\right)
Tāpirihia te -6 ki te 12, ka 6.
6-3x-3x^{2}=3x+6-6+x
Hei kimi i te tauaro o 6-x, kimihia te tauaro o ia taurangi.
6-3x-3x^{2}=3x+x
Tangohia te 6 i te 6, ka 0.
6-3x-3x^{2}=4x
Pahekotia te 3x me x, ka 4x.
6-3x-3x^{2}-4x=0
Tangohia te 4x mai i ngā taha e rua.
6-7x-3x^{2}=0
Pahekotia te -3x me -4x, ka -7x.
-3x^{2}-7x+6=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-7 ab=-3\times 6=-18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -3x^{2}+ax+bx+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-18 2,-9 3,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -18.
1-18=-17 2-9=-7 3-6=-3
Tātaihia te tapeke mō ia takirua.
a=2 b=-9
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(-3x^{2}+2x\right)+\left(-9x+6\right)
Tuhia anō te -3x^{2}-7x+6 hei \left(-3x^{2}+2x\right)+\left(-9x+6\right).
-x\left(3x-2\right)-3\left(3x-2\right)
Tauwehea te -x i te tuatahi me te -3 i te rōpū tuarua.
\left(3x-2\right)\left(-x-3\right)
Whakatauwehea atu te kīanga pātahi 3x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{2}{3} x=-3
Hei kimi otinga whārite, me whakaoti te 3x-2=0 me te -x-3=0.
-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-\left(6-x\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2-x,x-2,3x^{2}-12.
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-\left(6-x\right)
Whakareatia te 3 ki te -1, ka -3.
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-\left(6-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-2.
-6-3x-3x^{2}+12=3x+6-\left(6-x\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te -3x+6 ki te x+2 ka whakakotahi i ngā kupu rite.
6-3x-3x^{2}=3x+6-\left(6-x\right)
Tāpirihia te -6 ki te 12, ka 6.
6-3x-3x^{2}=3x+6-6+x
Hei kimi i te tauaro o 6-x, kimihia te tauaro o ia taurangi.
6-3x-3x^{2}=3x+x
Tangohia te 6 i te 6, ka 0.
6-3x-3x^{2}=4x
Pahekotia te 3x me x, ka 4x.
6-3x-3x^{2}-4x=0
Tangohia te 4x mai i ngā taha e rua.
6-7x-3x^{2}=0
Pahekotia te -3x me -4x, ka -7x.
-3x^{2}-7x+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-3\right)\times 6}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -7 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-3\right)\times 6}}{2\left(-3\right)}
Pūrua -7.
x=\frac{-\left(-7\right)±\sqrt{49+12\times 6}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2\left(-3\right)}
Whakareatia 12 ki te 6.
x=\frac{-\left(-7\right)±\sqrt{121}}{2\left(-3\right)}
Tāpiri 49 ki te 72.
x=\frac{-\left(-7\right)±11}{2\left(-3\right)}
Tuhia te pūtakerua o te 121.
x=\frac{7±11}{2\left(-3\right)}
Ko te tauaro o -7 ko 7.
x=\frac{7±11}{-6}
Whakareatia 2 ki te -3.
x=\frac{18}{-6}
Nā, me whakaoti te whārite x=\frac{7±11}{-6} ina he tāpiri te ±. Tāpiri 7 ki te 11.
x=-3
Whakawehe 18 ki te -6.
x=-\frac{4}{-6}
Nā, me whakaoti te whārite x=\frac{7±11}{-6} ina he tango te ±. Tango 11 mai i 7.
x=\frac{2}{3}
Whakahekea te hautanga \frac{-4}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-3 x=\frac{2}{3}
Kua oti te whārite te whakatau.
-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-\left(6-x\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2-x,x-2,3x^{2}-12.
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-\left(6-x\right)
Whakareatia te 3 ki te -1, ka -3.
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-\left(6-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-2.
-6-3x-3x^{2}+12=3x+6-\left(6-x\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te -3x+6 ki te x+2 ka whakakotahi i ngā kupu rite.
6-3x-3x^{2}=3x+6-\left(6-x\right)
Tāpirihia te -6 ki te 12, ka 6.
6-3x-3x^{2}=3x+6-6+x
Hei kimi i te tauaro o 6-x, kimihia te tauaro o ia taurangi.
6-3x-3x^{2}=3x+x
Tangohia te 6 i te 6, ka 0.
6-3x-3x^{2}=4x
Pahekotia te 3x me x, ka 4x.
6-3x-3x^{2}-4x=0
Tangohia te 4x mai i ngā taha e rua.
6-7x-3x^{2}=0
Pahekotia te -3x me -4x, ka -7x.
-7x-3x^{2}=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-3x^{2}-7x=-6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3x^{2}-7x}{-3}=-\frac{6}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\left(-\frac{7}{-3}\right)x=-\frac{6}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}+\frac{7}{3}x=-\frac{6}{-3}
Whakawehe -7 ki te -3.
x^{2}+\frac{7}{3}x=2
Whakawehe -6 ki te -3.
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=2+\left(\frac{7}{6}\right)^{2}
Whakawehea te \frac{7}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{6}. Nā, tāpiria te pūrua o te \frac{7}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{7}{3}x+\frac{49}{36}=2+\frac{49}{36}
Pūruatia \frac{7}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{121}{36}
Tāpiri 2 ki te \frac{49}{36}.
\left(x+\frac{7}{6}\right)^{2}=\frac{121}{36}
Tauwehea x^{2}+\frac{7}{3}x+\frac{49}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{121}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{6}=\frac{11}{6} x+\frac{7}{6}=-\frac{11}{6}
Whakarūnātia.
x=\frac{2}{3} x=-3
Me tango \frac{7}{6} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}