Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{1}{2-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 2+\sqrt{3}.
\frac{2+\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2+\sqrt{3}}{4-3}
Pūrua 2. Pūrua \sqrt{3}.
\frac{2+\sqrt{3}}{1}
Tangohia te 3 i te 4, ka 1.
2+\sqrt{3}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.