Aromātai
\frac{10000000000000000\sqrt{5}-5000000000000000}{2679491924311227}\approx 6.479093897
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2 \cdot 0.2679491924311227} {(\sqrt{20} - 1)}
Evaluate trigonometric functions in the problem
\frac{1}{0.5358983848622454}\left(\sqrt{20}-1\right)
Whakareatia te 2 ki te 0.2679491924311227, ka 0.5358983848622454.
\frac{10000000000000000}{5358983848622454}\left(\sqrt{20}-1\right)
Whakarohaina te \frac{1}{0.5358983848622454} mā te whakarea i te taurunga me te tauraro ki te 10000000000000000.
\frac{5000000000000000}{2679491924311227}\left(\sqrt{20}-1\right)
Whakahekea te hautanga \frac{10000000000000000}{5358983848622454} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{5000000000000000}{2679491924311227}\left(2\sqrt{5}-1\right)
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
\frac{5000000000000000}{2679491924311227}\times 2\sqrt{5}+\frac{5000000000000000}{2679491924311227}\left(-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{5000000000000000}{2679491924311227} ki te 2\sqrt{5}-1.
\frac{5000000000000000\times 2}{2679491924311227}\sqrt{5}+\frac{5000000000000000}{2679491924311227}\left(-1\right)
Tuhia te \frac{5000000000000000}{2679491924311227}\times 2 hei hautanga kotahi.
\frac{10000000000000000}{2679491924311227}\sqrt{5}+\frac{5000000000000000}{2679491924311227}\left(-1\right)
Whakareatia te 5000000000000000 ki te 2, ka 10000000000000000.
\frac{10000000000000000}{2679491924311227}\sqrt{5}-\frac{5000000000000000}{2679491924311227}
Whakareatia te \frac{5000000000000000}{2679491924311227} ki te -1, ka -\frac{5000000000000000}{2679491924311227}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}