Whakaoti mō x
x = \frac{13}{2} = 6\frac{1}{2} = 6.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{2}x+6=\frac{11}{4}
Pahekotia te \frac{1}{2}x me -x, ka -\frac{1}{2}x.
-\frac{1}{2}x=\frac{11}{4}-6
Tangohia te 6 mai i ngā taha e rua.
-\frac{1}{2}x=\frac{11}{4}-\frac{24}{4}
Me tahuri te 6 ki te hautau \frac{24}{4}.
-\frac{1}{2}x=\frac{11-24}{4}
Tā te mea he rite te tauraro o \frac{11}{4} me \frac{24}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{2}x=-\frac{13}{4}
Tangohia te 24 i te 11, ka -13.
x=-\frac{13}{4}\left(-2\right)
Me whakarea ngā taha e rua ki te -2, te tau utu o -\frac{1}{2}.
x=\frac{-13\left(-2\right)}{4}
Tuhia te -\frac{13}{4}\left(-2\right) hei hautanga kotahi.
x=\frac{26}{4}
Whakareatia te -13 ki te -2, ka 26.
x=\frac{13}{2}
Whakahekea te hautanga \frac{26}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}