Aromātai
\frac{11}{6}\approx 1.833333333
Tauwehe
\frac{11}{2 \cdot 3} = 1\frac{5}{6} = 1.8333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}-\left(-3\times \frac{5}{6}\right)+\frac{4}{9}\left(-\frac{3}{8}\right)-1
Whakawehe -3 ki te \frac{6}{5} mā te whakarea -3 ki te tau huripoki o \frac{6}{5}.
\frac{1}{2}-\frac{-3\times 5}{6}+\frac{4}{9}\left(-\frac{3}{8}\right)-1
Tuhia te -3\times \frac{5}{6} hei hautanga kotahi.
\frac{1}{2}-\frac{-15}{6}+\frac{4}{9}\left(-\frac{3}{8}\right)-1
Whakareatia te -3 ki te 5, ka -15.
\frac{1}{2}-\left(-\frac{5}{2}\right)+\frac{4}{9}\left(-\frac{3}{8}\right)-1
Whakahekea te hautanga \frac{-15}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1}{2}+\frac{5}{2}+\frac{4}{9}\left(-\frac{3}{8}\right)-1
Ko te tauaro o -\frac{5}{2} ko \frac{5}{2}.
\frac{1+5}{2}+\frac{4}{9}\left(-\frac{3}{8}\right)-1
Tā te mea he rite te tauraro o \frac{1}{2} me \frac{5}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6}{2}+\frac{4}{9}\left(-\frac{3}{8}\right)-1
Tāpirihia te 1 ki te 5, ka 6.
3+\frac{4}{9}\left(-\frac{3}{8}\right)-1
Whakawehea te 6 ki te 2, kia riro ko 3.
3+\frac{4\left(-3\right)}{9\times 8}-1
Me whakarea te \frac{4}{9} ki te -\frac{3}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
3+\frac{-12}{72}-1
Mahia ngā whakarea i roto i te hautanga \frac{4\left(-3\right)}{9\times 8}.
3-\frac{1}{6}-1
Whakahekea te hautanga \frac{-12}{72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
\frac{18}{6}-\frac{1}{6}-1
Me tahuri te 3 ki te hautau \frac{18}{6}.
\frac{18-1}{6}-1
Tā te mea he rite te tauraro o \frac{18}{6} me \frac{1}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{17}{6}-1
Tangohia te 1 i te 18, ka 17.
\frac{17}{6}-\frac{6}{6}
Me tahuri te 1 ki te hautau \frac{6}{6}.
\frac{17-6}{6}
Tā te mea he rite te tauraro o \frac{17}{6} me \frac{6}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{11}{6}
Tangohia te 6 i te 17, ka 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}