Aromātai
-\frac{265}{2}=-132.5
Tauwehe
-\frac{265}{2} = -132\frac{1}{2} = -132.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}-8\times 3^{2}+3-2^{2}\times 4^{2}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\frac{1}{2}-8\times 9+3-2^{2}\times 4^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{1}{2}-72+3-2^{2}\times 4^{2}
Whakareatia te 8 ki te 9, ka 72.
\frac{1}{2}-\frac{144}{2}+3-2^{2}\times 4^{2}
Me tahuri te 72 ki te hautau \frac{144}{2}.
\frac{1-144}{2}+3-2^{2}\times 4^{2}
Tā te mea he rite te tauraro o \frac{1}{2} me \frac{144}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{143}{2}+3-2^{2}\times 4^{2}
Tangohia te 144 i te 1, ka -143.
-\frac{143}{2}+\frac{6}{2}-2^{2}\times 4^{2}
Me tahuri te 3 ki te hautau \frac{6}{2}.
\frac{-143+6}{2}-2^{2}\times 4^{2}
Tā te mea he rite te tauraro o -\frac{143}{2} me \frac{6}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{137}{2}-2^{2}\times 4^{2}
Tāpirihia te -143 ki te 6, ka -137.
-\frac{137}{2}-4\times 4^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
-\frac{137}{2}-4\times 16
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
-\frac{137}{2}-64
Whakareatia te 4 ki te 16, ka 64.
-\frac{137}{2}-\frac{128}{2}
Me tahuri te 64 ki te hautau \frac{128}{2}.
\frac{-137-128}{2}
Tā te mea he rite te tauraro o -\frac{137}{2} me \frac{128}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{265}{2}
Tangohia te 128 i te -137, ka -265.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}