Whakaoti mō x
x=2
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}x^{2}-x=0
Tangohia te x mai i ngā taha e rua.
x\left(\frac{1}{2}x-1\right)=0
Tauwehea te x.
x=0 x=2
Hei kimi otinga whārite, me whakaoti te x=0 me te \frac{x}{2}-1=0.
\frac{1}{2}x^{2}-x=0
Tangohia te x mai i ngā taha e rua.
x=\frac{-\left(-1\right)±\sqrt{1}}{2\times \frac{1}{2}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{2} mō a, -1 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±1}{2\times \frac{1}{2}}
Tuhia te pūtakerua o te 1.
x=\frac{1±1}{2\times \frac{1}{2}}
Ko te tauaro o -1 ko 1.
x=\frac{1±1}{1}
Whakareatia 2 ki te \frac{1}{2}.
x=\frac{2}{1}
Nā, me whakaoti te whārite x=\frac{1±1}{1} ina he tāpiri te ±. Tāpiri 1 ki te 1.
x=2
Whakawehe 2 ki te 1.
x=\frac{0}{1}
Nā, me whakaoti te whārite x=\frac{1±1}{1} ina he tango te ±. Tango 1 mai i 1.
x=0
Whakawehe 0 ki te 1.
x=2 x=0
Kua oti te whārite te whakatau.
\frac{1}{2}x^{2}-x=0
Tangohia te x mai i ngā taha e rua.
\frac{\frac{1}{2}x^{2}-x}{\frac{1}{2}}=\frac{0}{\frac{1}{2}}
Me whakarea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{1}{\frac{1}{2}}\right)x=\frac{0}{\frac{1}{2}}
Mā te whakawehe ki te \frac{1}{2} ka wetekia te whakareanga ki te \frac{1}{2}.
x^{2}-2x=\frac{0}{\frac{1}{2}}
Whakawehe -1 ki te \frac{1}{2} mā te whakarea -1 ki te tau huripoki o \frac{1}{2}.
x^{2}-2x=0
Whakawehe 0 ki te \frac{1}{2} mā te whakarea 0 ki te tau huripoki o \frac{1}{2}.
x^{2}-2x+1=1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
\left(x-1\right)^{2}=1
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=1 x-1=-1
Whakarūnātia.
x=2 x=0
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}