Whakaoti mō h
h = \frac{1735}{98} = 17\frac{69}{98} \approx 17.704081633
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac{ 1 }{ 2 } { 59 }^{ 2 } - \frac{ 1 }{ 2 } 11 = 98h
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}\times 3481-\frac{1}{2}\times 11=98h
Tātaihia te 59 mā te pū o 2, kia riro ko 3481.
\frac{3481}{2}-\frac{1}{2}\times 11=98h
Whakareatia te \frac{1}{2} ki te 3481, ka \frac{3481}{2}.
\frac{3481}{2}-\frac{11}{2}=98h
Whakareatia te \frac{1}{2} ki te 11, ka \frac{11}{2}.
\frac{3481-11}{2}=98h
Tā te mea he rite te tauraro o \frac{3481}{2} me \frac{11}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{3470}{2}=98h
Tangohia te 11 i te 3481, ka 3470.
1735=98h
Whakawehea te 3470 ki te 2, kia riro ko 1735.
98h=1735
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
h=\frac{1735}{98}
Whakawehea ngā taha e rua ki te 98.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}