Whakaoti mō x
x=\sqrt{64319}\approx 253.611908238
x=-\sqrt{64319}\approx -253.611908238
Graph
Tohaina
Kua tāruatia ki te papatopenga
15\left(253^{2}-x^{2}\right)=-30\times 155
Whakareatia te \frac{1}{2} ki te 30, ka 15.
15\left(64009-x^{2}\right)=-30\times 155
Tātaihia te 253 mā te pū o 2, kia riro ko 64009.
960135-15x^{2}=-30\times 155
Whakamahia te āhuatanga tohatoha hei whakarea te 15 ki te 64009-x^{2}.
960135-15x^{2}=-4650
Whakareatia te -30 ki te 155, ka -4650.
-15x^{2}=-4650-960135
Tangohia te 960135 mai i ngā taha e rua.
-15x^{2}=-964785
Tangohia te 960135 i te -4650, ka -964785.
x^{2}=\frac{-964785}{-15}
Whakawehea ngā taha e rua ki te -15.
x^{2}=64319
Whakawehea te -964785 ki te -15, kia riro ko 64319.
x=\sqrt{64319} x=-\sqrt{64319}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
15\left(253^{2}-x^{2}\right)=-30\times 155
Whakareatia te \frac{1}{2} ki te 30, ka 15.
15\left(64009-x^{2}\right)=-30\times 155
Tātaihia te 253 mā te pū o 2, kia riro ko 64009.
960135-15x^{2}=-30\times 155
Whakamahia te āhuatanga tohatoha hei whakarea te 15 ki te 64009-x^{2}.
960135-15x^{2}=-4650
Whakareatia te -30 ki te 155, ka -4650.
960135-15x^{2}+4650=0
Me tāpiri te 4650 ki ngā taha e rua.
964785-15x^{2}=0
Tāpirihia te 960135 ki te 4650, ka 964785.
-15x^{2}+964785=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-15\right)\times 964785}}{2\left(-15\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -15 mō a, 0 mō b, me 964785 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-15\right)\times 964785}}{2\left(-15\right)}
Pūrua 0.
x=\frac{0±\sqrt{60\times 964785}}{2\left(-15\right)}
Whakareatia -4 ki te -15.
x=\frac{0±\sqrt{57887100}}{2\left(-15\right)}
Whakareatia 60 ki te 964785.
x=\frac{0±30\sqrt{64319}}{2\left(-15\right)}
Tuhia te pūtakerua o te 57887100.
x=\frac{0±30\sqrt{64319}}{-30}
Whakareatia 2 ki te -15.
x=-\sqrt{64319}
Nā, me whakaoti te whārite x=\frac{0±30\sqrt{64319}}{-30} ina he tāpiri te ±.
x=\sqrt{64319}
Nā, me whakaoti te whārite x=\frac{0±30\sqrt{64319}}{-30} ina he tango te ±.
x=-\sqrt{64319} x=\sqrt{64319}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}