Whakaoti mō x
x = \frac{\sqrt{67109}}{10} \approx 25.905404841
x = -\frac{\sqrt{67109}}{10} \approx -25.905404841
Graph
Tohaina
Kua tāruatia ki te papatopenga
15\left(25.3^{2}-x^{2}\right)=-30\times 15.5
Whakareatia te \frac{1}{2} ki te 30, ka 15.
15\left(640.09-x^{2}\right)=-30\times 15.5
Tātaihia te 25.3 mā te pū o 2, kia riro ko 640.09.
9601.35-15x^{2}=-30\times 15.5
Whakamahia te āhuatanga tohatoha hei whakarea te 15 ki te 640.09-x^{2}.
9601.35-15x^{2}=-465
Whakareatia te -30 ki te 15.5, ka -465.
-15x^{2}=-465-9601.35
Tangohia te 9601.35 mai i ngā taha e rua.
-15x^{2}=-10066.35
Tangohia te 9601.35 i te -465, ka -10066.35.
x^{2}=\frac{-10066.35}{-15}
Whakawehea ngā taha e rua ki te -15.
x^{2}=\frac{-1006635}{-1500}
Whakarohaina te \frac{-10066.35}{-15} mā te whakarea i te taurunga me te tauraro ki te 100.
x^{2}=\frac{67109}{100}
Whakahekea te hautanga \frac{-1006635}{-1500} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -15.
x=\frac{\sqrt{67109}}{10} x=-\frac{\sqrt{67109}}{10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
15\left(25.3^{2}-x^{2}\right)=-30\times 15.5
Whakareatia te \frac{1}{2} ki te 30, ka 15.
15\left(640.09-x^{2}\right)=-30\times 15.5
Tātaihia te 25.3 mā te pū o 2, kia riro ko 640.09.
9601.35-15x^{2}=-30\times 15.5
Whakamahia te āhuatanga tohatoha hei whakarea te 15 ki te 640.09-x^{2}.
9601.35-15x^{2}=-465
Whakareatia te -30 ki te 15.5, ka -465.
9601.35-15x^{2}+465=0
Me tāpiri te 465 ki ngā taha e rua.
10066.35-15x^{2}=0
Tāpirihia te 9601.35 ki te 465, ka 10066.35.
-15x^{2}+10066.35=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-15\right)\times 10066.35}}{2\left(-15\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -15 mō a, 0 mō b, me 10066.35 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-15\right)\times 10066.35}}{2\left(-15\right)}
Pūrua 0.
x=\frac{0±\sqrt{60\times 10066.35}}{2\left(-15\right)}
Whakareatia -4 ki te -15.
x=\frac{0±\sqrt{603981}}{2\left(-15\right)}
Whakareatia 60 ki te 10066.35.
x=\frac{0±3\sqrt{67109}}{2\left(-15\right)}
Tuhia te pūtakerua o te 603981.
x=\frac{0±3\sqrt{67109}}{-30}
Whakareatia 2 ki te -15.
x=-\frac{\sqrt{67109}}{10}
Nā, me whakaoti te whārite x=\frac{0±3\sqrt{67109}}{-30} ina he tāpiri te ±.
x=\frac{\sqrt{67109}}{10}
Nā, me whakaoti te whārite x=\frac{0±3\sqrt{67109}}{-30} ina he tango te ±.
x=-\frac{\sqrt{67109}}{10} x=\frac{\sqrt{67109}}{10}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}