Whakaoti mō k
k=2
k=-\frac{2}{3}\approx -0.666666667
Tohaina
Kua tāruatia ki te papatopenga
1\left(1-\frac{k}{2}\right)\left(2-k\right)=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Whakareatia ngā taha e rua o te whārite ki te 2.
\left(1-\frac{k}{2}\right)\left(2-k\right)=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 1 ki te 1-\frac{k}{2}.
2-k+2\left(-\frac{k}{2}\right)-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 1-\frac{k}{2} ki ia tau o 2-k.
2-k+\frac{-2k}{2}-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Tuhia te 2\left(-\frac{k}{2}\right) hei hautanga kotahi.
2-k-k-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Me whakakore te 2 me te 2.
2-2k-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Pahekotia te -k me -k, ka -2k.
2-2k+\frac{k}{2}k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Whakareatia te -1 ki te -1, ka 1.
2-2k+\frac{kk}{2}=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Tuhia te \frac{k}{2}k hei hautanga kotahi.
2-2k+\frac{k^{2}}{2}=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Whakareatia te k ki te k, ka k^{2}.
2-2k+\frac{k^{2}}{2}=\left(2k+4\right)\left(1-\frac{k}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te k+2.
2-2k+\frac{k^{2}}{2}=2k+2k\left(-\frac{k}{2}\right)+4+4\left(-\frac{k}{2}\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2k+4 ki ia tau o 1-\frac{k}{2}.
2-2k+\frac{k^{2}}{2}=2k+\frac{-2k}{2}k+4+4\left(-\frac{k}{2}\right)
Tuhia te 2\left(-\frac{k}{2}\right) hei hautanga kotahi.
2-2k+\frac{k^{2}}{2}=2k-kk+4+4\left(-\frac{k}{2}\right)
Me whakakore te 2 me te 2.
2-2k+\frac{k^{2}}{2}=2k-kk+4-2k
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.
2-2k+\frac{k^{2}}{2}=-kk+4
Pahekotia te 2k me -2k, ka 0.
2-2k+\frac{k^{2}}{2}=-k^{2}+4
Whakareatia te k ki te k, ka k^{2}.
2-2k+\frac{k^{2}}{2}+k^{2}=4
Me tāpiri te k^{2} ki ngā taha e rua.
2-2k+\frac{3}{2}k^{2}=4
Pahekotia te \frac{k^{2}}{2} me k^{2}, ka \frac{3}{2}k^{2}.
2-2k+\frac{3}{2}k^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
-2-2k+\frac{3}{2}k^{2}=0
Tangohia te 4 i te 2, ka -2.
\frac{3}{2}k^{2}-2k-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
k=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{3}{2}\left(-2\right)}}{2\times \frac{3}{2}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{3}{2} mō a, -2 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{3}{2}\left(-2\right)}}{2\times \frac{3}{2}}
Pūrua -2.
k=\frac{-\left(-2\right)±\sqrt{4-6\left(-2\right)}}{2\times \frac{3}{2}}
Whakareatia -4 ki te \frac{3}{2}.
k=\frac{-\left(-2\right)±\sqrt{4+12}}{2\times \frac{3}{2}}
Whakareatia -6 ki te -2.
k=\frac{-\left(-2\right)±\sqrt{16}}{2\times \frac{3}{2}}
Tāpiri 4 ki te 12.
k=\frac{-\left(-2\right)±4}{2\times \frac{3}{2}}
Tuhia te pūtakerua o te 16.
k=\frac{2±4}{2\times \frac{3}{2}}
Ko te tauaro o -2 ko 2.
k=\frac{2±4}{3}
Whakareatia 2 ki te \frac{3}{2}.
k=\frac{6}{3}
Nā, me whakaoti te whārite k=\frac{2±4}{3} ina he tāpiri te ±. Tāpiri 2 ki te 4.
k=2
Whakawehe 6 ki te 3.
k=-\frac{2}{3}
Nā, me whakaoti te whārite k=\frac{2±4}{3} ina he tango te ±. Tango 4 mai i 2.
k=2 k=-\frac{2}{3}
Kua oti te whārite te whakatau.
1\left(1-\frac{k}{2}\right)\left(2-k\right)=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Whakareatia ngā taha e rua o te whārite ki te 2.
\left(1-\frac{k}{2}\right)\left(2-k\right)=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 1 ki te 1-\frac{k}{2}.
2-k+2\left(-\frac{k}{2}\right)-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 1-\frac{k}{2} ki ia tau o 2-k.
2-k+\frac{-2k}{2}-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Tuhia te 2\left(-\frac{k}{2}\right) hei hautanga kotahi.
2-k-k-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Me whakakore te 2 me te 2.
2-2k-\left(-\frac{k}{2}\right)k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Pahekotia te -k me -k, ka -2k.
2-2k+\frac{k}{2}k=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Whakareatia te -1 ki te -1, ka 1.
2-2k+\frac{kk}{2}=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Tuhia te \frac{k}{2}k hei hautanga kotahi.
2-2k+\frac{k^{2}}{2}=2\left(k+2\right)\left(1-\frac{k}{2}\right)
Whakareatia te k ki te k, ka k^{2}.
2-2k+\frac{k^{2}}{2}=\left(2k+4\right)\left(1-\frac{k}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te k+2.
2-2k+\frac{k^{2}}{2}=2k+2k\left(-\frac{k}{2}\right)+4+4\left(-\frac{k}{2}\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2k+4 ki ia tau o 1-\frac{k}{2}.
2-2k+\frac{k^{2}}{2}=2k+\frac{-2k}{2}k+4+4\left(-\frac{k}{2}\right)
Tuhia te 2\left(-\frac{k}{2}\right) hei hautanga kotahi.
2-2k+\frac{k^{2}}{2}=2k-kk+4+4\left(-\frac{k}{2}\right)
Me whakakore te 2 me te 2.
2-2k+\frac{k^{2}}{2}=2k-kk+4-2k
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.
2-2k+\frac{k^{2}}{2}=-kk+4
Pahekotia te 2k me -2k, ka 0.
2-2k+\frac{k^{2}}{2}=-k^{2}+4
Whakareatia te k ki te k, ka k^{2}.
2-2k+\frac{k^{2}}{2}+k^{2}=4
Me tāpiri te k^{2} ki ngā taha e rua.
2-2k+\frac{3}{2}k^{2}=4
Pahekotia te \frac{k^{2}}{2} me k^{2}, ka \frac{3}{2}k^{2}.
-2k+\frac{3}{2}k^{2}=4-2
Tangohia te 2 mai i ngā taha e rua.
-2k+\frac{3}{2}k^{2}=2
Tangohia te 2 i te 4, ka 2.
\frac{3}{2}k^{2}-2k=2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{\frac{3}{2}k^{2}-2k}{\frac{3}{2}}=\frac{2}{\frac{3}{2}}
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
k^{2}+\left(-\frac{2}{\frac{3}{2}}\right)k=\frac{2}{\frac{3}{2}}
Mā te whakawehe ki te \frac{3}{2} ka wetekia te whakareanga ki te \frac{3}{2}.
k^{2}-\frac{4}{3}k=\frac{2}{\frac{3}{2}}
Whakawehe -2 ki te \frac{3}{2} mā te whakarea -2 ki te tau huripoki o \frac{3}{2}.
k^{2}-\frac{4}{3}k=\frac{4}{3}
Whakawehe 2 ki te \frac{3}{2} mā te whakarea 2 ki te tau huripoki o \frac{3}{2}.
k^{2}-\frac{4}{3}k+\left(-\frac{2}{3}\right)^{2}=\frac{4}{3}+\left(-\frac{2}{3}\right)^{2}
Whakawehea te -\frac{4}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{3}. Nā, tāpiria te pūrua o te -\frac{2}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
k^{2}-\frac{4}{3}k+\frac{4}{9}=\frac{4}{3}+\frac{4}{9}
Pūruatia -\frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
k^{2}-\frac{4}{3}k+\frac{4}{9}=\frac{16}{9}
Tāpiri \frac{4}{3} ki te \frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(k-\frac{2}{3}\right)^{2}=\frac{16}{9}
Tauwehea k^{2}-\frac{4}{3}k+\frac{4}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-\frac{2}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
k-\frac{2}{3}=\frac{4}{3} k-\frac{2}{3}=-\frac{4}{3}
Whakarūnātia.
k=2 k=-\frac{2}{3}
Me tāpiri \frac{2}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}