Aromātai
-\frac{7}{96}\approx -0.072916667
Tauwehe
-\frac{7}{96} = -0.07291666666666667
Tohaina
Kua tāruatia ki te papatopenga
\frac{1\times 1}{12\times 12}\times \frac{3}{2}-\frac{1}{12}
Me whakarea te \frac{1}{12} ki te \frac{1}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{144}\times \frac{3}{2}-\frac{1}{12}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{12\times 12}.
\frac{1\times 3}{144\times 2}-\frac{1}{12}
Me whakarea te \frac{1}{144} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{288}-\frac{1}{12}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{144\times 2}.
\frac{1}{96}-\frac{1}{12}
Whakahekea te hautanga \frac{3}{288} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1}{96}-\frac{8}{96}
Ko te maha noa iti rawa atu o 96 me 12 ko 96. Me tahuri \frac{1}{96} me \frac{1}{12} ki te hautau me te tautūnga 96.
\frac{1-8}{96}
Tā te mea he rite te tauraro o \frac{1}{96} me \frac{8}{96}, me tango rāua mā te tango i ō raua taurunga.
-\frac{7}{96}
Tangohia te 8 i te 1, ka -7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}