Whakaoti mō t
t=80
t=600
Tohaina
Kua tāruatia ki te papatopenga
t\left(t-480\right)=100t+100t-48000
Tē taea kia ōrite te tāupe t ki tētahi o ngā uara 0,480 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 100t\left(t-480\right), arā, te tauraro pātahi he tino iti rawa te kitea o 100,t-480,t.
t^{2}-480t=100t+100t-48000
Whakamahia te āhuatanga tohatoha hei whakarea te t ki te t-480.
t^{2}-480t=200t-48000
Pahekotia te 100t me 100t, ka 200t.
t^{2}-480t-200t=-48000
Tangohia te 200t mai i ngā taha e rua.
t^{2}-680t=-48000
Pahekotia te -480t me -200t, ka -680t.
t^{2}-680t+48000=0
Me tāpiri te 48000 ki ngā taha e rua.
t=\frac{-\left(-680\right)±\sqrt{\left(-680\right)^{2}-4\times 48000}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -680 mō b, me 48000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-680\right)±\sqrt{462400-4\times 48000}}{2}
Pūrua -680.
t=\frac{-\left(-680\right)±\sqrt{462400-192000}}{2}
Whakareatia -4 ki te 48000.
t=\frac{-\left(-680\right)±\sqrt{270400}}{2}
Tāpiri 462400 ki te -192000.
t=\frac{-\left(-680\right)±520}{2}
Tuhia te pūtakerua o te 270400.
t=\frac{680±520}{2}
Ko te tauaro o -680 ko 680.
t=\frac{1200}{2}
Nā, me whakaoti te whārite t=\frac{680±520}{2} ina he tāpiri te ±. Tāpiri 680 ki te 520.
t=600
Whakawehe 1200 ki te 2.
t=\frac{160}{2}
Nā, me whakaoti te whārite t=\frac{680±520}{2} ina he tango te ±. Tango 520 mai i 680.
t=80
Whakawehe 160 ki te 2.
t=600 t=80
Kua oti te whārite te whakatau.
t\left(t-480\right)=100t+100t-48000
Tē taea kia ōrite te tāupe t ki tētahi o ngā uara 0,480 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 100t\left(t-480\right), arā, te tauraro pātahi he tino iti rawa te kitea o 100,t-480,t.
t^{2}-480t=100t+100t-48000
Whakamahia te āhuatanga tohatoha hei whakarea te t ki te t-480.
t^{2}-480t=200t-48000
Pahekotia te 100t me 100t, ka 200t.
t^{2}-480t-200t=-48000
Tangohia te 200t mai i ngā taha e rua.
t^{2}-680t=-48000
Pahekotia te -480t me -200t, ka -680t.
t^{2}-680t+\left(-340\right)^{2}=-48000+\left(-340\right)^{2}
Whakawehea te -680, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -340. Nā, tāpiria te pūrua o te -340 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-680t+115600=-48000+115600
Pūrua -340.
t^{2}-680t+115600=67600
Tāpiri -48000 ki te 115600.
\left(t-340\right)^{2}=67600
Tauwehea t^{2}-680t+115600. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-340\right)^{2}}=\sqrt{67600}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-340=260 t-340=-260
Whakarūnātia.
t=600 t=80
Me tāpiri 340 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}