Aromātai
\frac{55807}{10}=5580.7
Tauwehe
\frac{55807}{2 \cdot 5} = 5580\frac{7}{10} = 5580.7
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{10}\left(\left(-74\right)^{2}\times 2+\left(8-83\right)^{2}\times 6+\left(10-83\right)^{2}+\left(7-83\right)^{2}\right)
Tangohia te 83 i te 9, ka -74.
\frac{1}{10}\left(5476\times 2+\left(8-83\right)^{2}\times 6+\left(10-83\right)^{2}+\left(7-83\right)^{2}\right)
Tātaihia te -74 mā te pū o 2, kia riro ko 5476.
\frac{1}{10}\left(10952+\left(8-83\right)^{2}\times 6+\left(10-83\right)^{2}+\left(7-83\right)^{2}\right)
Whakareatia te 5476 ki te 2, ka 10952.
\frac{1}{10}\left(10952+\left(-75\right)^{2}\times 6+\left(10-83\right)^{2}+\left(7-83\right)^{2}\right)
Tangohia te 83 i te 8, ka -75.
\frac{1}{10}\left(10952+5625\times 6+\left(10-83\right)^{2}+\left(7-83\right)^{2}\right)
Tātaihia te -75 mā te pū o 2, kia riro ko 5625.
\frac{1}{10}\left(10952+33750+\left(10-83\right)^{2}+\left(7-83\right)^{2}\right)
Whakareatia te 5625 ki te 6, ka 33750.
\frac{1}{10}\left(44702+\left(10-83\right)^{2}+\left(7-83\right)^{2}\right)
Tāpirihia te 10952 ki te 33750, ka 44702.
\frac{1}{10}\left(44702+\left(-73\right)^{2}+\left(7-83\right)^{2}\right)
Tangohia te 83 i te 10, ka -73.
\frac{1}{10}\left(44702+5329+\left(7-83\right)^{2}\right)
Tātaihia te -73 mā te pū o 2, kia riro ko 5329.
\frac{1}{10}\left(50031+\left(7-83\right)^{2}\right)
Tāpirihia te 44702 ki te 5329, ka 50031.
\frac{1}{10}\left(50031+\left(-76\right)^{2}\right)
Tangohia te 83 i te 7, ka -76.
\frac{1}{10}\left(50031+5776\right)
Tātaihia te -76 mā te pū o 2, kia riro ko 5776.
\frac{1}{10}\times 55807
Tāpirihia te 50031 ki te 5776, ka 55807.
\frac{55807}{10}
Whakareatia te \frac{1}{10} ki te 55807, ka \frac{55807}{10}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}