Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{-2+\sqrt{2}}{\left(-2-\sqrt{2}\right)\left(-2+\sqrt{2}\right)}+\frac{1}{-2+\sqrt{2}}
Whakangāwaritia te tauraro o \frac{1}{-2-\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te -2+\sqrt{2}.
\frac{-2+\sqrt{2}}{\left(-2\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{1}{-2+\sqrt{2}}
Whakaarohia te \left(-2-\sqrt{2}\right)\left(-2+\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-2+\sqrt{2}}{4-2}+\frac{1}{-2+\sqrt{2}}
Pūrua -2. Pūrua \sqrt{2}.
\frac{-2+\sqrt{2}}{2}+\frac{1}{-2+\sqrt{2}}
Tangohia te 2 i te 4, ka 2.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{\left(-2+\sqrt{2}\right)\left(-2-\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{1}{-2+\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te -2-\sqrt{2}.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{\left(-2\right)^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(-2+\sqrt{2}\right)\left(-2-\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{4-2}
Pūrua -2. Pūrua \sqrt{2}.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{2}
Tangohia te 2 i te 4, ka 2.
\frac{-2+\sqrt{2}-2-\sqrt{2}}{2}
Tā te mea he rite te tauraro o \frac{-2+\sqrt{2}}{2} me \frac{-2-\sqrt{2}}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-4}{2}
Mahia ngā tātaitai i roto o -2+\sqrt{2}-2-\sqrt{2}.
-2
Whakawehea te -4 ki te 2, kia riro ko -2.