Aromātai
-2
Tauwehe
-2
Tohaina
Kua tāruatia ki te papatopenga
\frac{-2+\sqrt{2}}{\left(-2-\sqrt{2}\right)\left(-2+\sqrt{2}\right)}+\frac{1}{-2+\sqrt{2}}
Whakangāwaritia te tauraro o \frac{1}{-2-\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te -2+\sqrt{2}.
\frac{-2+\sqrt{2}}{\left(-2\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{1}{-2+\sqrt{2}}
Whakaarohia te \left(-2-\sqrt{2}\right)\left(-2+\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-2+\sqrt{2}}{4-2}+\frac{1}{-2+\sqrt{2}}
Pūrua -2. Pūrua \sqrt{2}.
\frac{-2+\sqrt{2}}{2}+\frac{1}{-2+\sqrt{2}}
Tangohia te 2 i te 4, ka 2.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{\left(-2+\sqrt{2}\right)\left(-2-\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{1}{-2+\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te -2-\sqrt{2}.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{\left(-2\right)^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(-2+\sqrt{2}\right)\left(-2-\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{4-2}
Pūrua -2. Pūrua \sqrt{2}.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{2}
Tangohia te 2 i te 4, ka 2.
\frac{-2+\sqrt{2}-2-\sqrt{2}}{2}
Tā te mea he rite te tauraro o \frac{-2+\sqrt{2}}{2} me \frac{-2-\sqrt{2}}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-4}{2}
Mahia ngā tātaitai i roto o -2+\sqrt{2}-2-\sqrt{2}.
-2
Whakawehea te -4 ki te 2, kia riro ko -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}