Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Whakaoti mō x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6yzx^{-\frac{1}{2}}=3z+2y
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6yz, arā, te tauraro pātahi he tino iti rawa te kitea o 2y,3z.
6yzx^{-\frac{1}{2}}-2y=3z
Tangohia te 2y mai i ngā taha e rua.
\left(6zx^{-\frac{1}{2}}-2\right)y=3z
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(\frac{6z}{\sqrt{x}}-2\right)y=3z
He hanga arowhānui tō te whārite.
\frac{\left(\frac{6z}{\sqrt{x}}-2\right)y}{\frac{6z}{\sqrt{x}}-2}=\frac{3z}{\frac{6z}{\sqrt{x}}-2}
Whakawehea ngā taha e rua ki te 6zx^{-\frac{1}{2}}-2.
y=\frac{3z}{\frac{6z}{\sqrt{x}}-2}
Mā te whakawehe ki te 6zx^{-\frac{1}{2}}-2 ka wetekia te whakareanga ki te 6zx^{-\frac{1}{2}}-2.
y=\frac{3\sqrt{x}z}{2\left(3z-\sqrt{x}\right)}
Whakawehe 3z ki te 6zx^{-\frac{1}{2}}-2.
y=\frac{3\sqrt{x}z}{2\left(3z-\sqrt{x}\right)}\text{, }y\neq 0
Tē taea kia ōrite te tāupe y ki 0.